Изобретение относится к авиационному двигателестроению, а именно к гиперзвуковым прямоточным воздушно-реактивным двигателям (ГПВРД), и может быть использовано при разработке ГПВРД с разгоняющим твердотопливным картриджем.
Выполненные расчетные и экспериментальные исследования показали, что успешная реализация гиперзвукового полета в атмосфере Земли возможна при комплексном решении таких проблем, как: снижение аэродинамического сопротивления и улучшение массогабаритных характеристик летательного аппарата, повышение полноты сгорания топлива и использование кислорода воздуха в качестве окислителя, а также решении проблем теплозащиты наиболее теплонапряженных элементов двигателя и летательного аппарата. Кроме этого следует иметь в виду, что ГПВРД не имеет стартовой тяги и ему необходим стартовый разгон.
Известен комбинированный ракетно-прямоточный двигатель (патент RU №2015390, МПК F02K 7/18, 1994), содержащий корпус, воздухозаборник, камеру сгорания, сопловой аппарат, топливную систему, воспламенитель, систему управления и установленный в камере сгорания на фиксаторах стартовый двигатель со своим корпусом и соплом.
Недостатком известного комбинированного ракетно-прямоточного двигателя является дополнительный вес корпуса стартового двигателя и его сопла.
Известен также способ формирования рабочего процесса ракетно-прямоточного двигателя и устройство для его осуществления (патент RU №1833790 A1, МПК F02K 7/18, 1993), включающий сжигание твердотопливного заряда, сжатие воздуха в воздухозаборнике, подачу топливе, смешение воздуха с топливом и продуктами неполного сгорания топлива, дожигание топливовоздушной смеси в сталкивающихся сверхзвуковых струях, расширение продуктов горения в сопле и регулирование режима горения. При этом устройство для осуществления способа формирования рабочего процесса комбинированного ракетно-прямоточного двигателя содержит корпус, воздухозаборник, камеру дожигания, выходное сопло, топливную систему с форсункой и ракетный двигатель твердого топлива с камерой сгорания, сообщенной с камерой дожигания газоводами, образованными сверхзвуковыми кососрезанными соплами, связанными с приводами их вращения.
Недостатком известного способа формирования рабочего процесса ракетно-прямоточного двигателя и устройства для его осуществления является сложная организация столкновения сверхзвуковых струй и дожигания продуктов неполного сгорания топлива, а также ненадежная система вращения кососрезанных сопл с резонатором в условиях высоких температур и ударных нагрузок.
Наиболее близким из известных технических решений к предлагаемому гиперзвуковому прямоточному воздушно-реактивному двигателю и способу организации рабочего процесса в нем является принятый за прототип гиперзвуковой прямоточный воздушно-реактивный двигатель и способ организации горения (патент RU №2262000, МПК F02K 7/10, 2005), включающий корпус двигателя, воздухозаборник с центральным телом, топливную форсунку, расположенную перед воздухозаборником и соединенную пилонами с ним, камеру сгорания, воспламенитель и сопло. При этом способ организации горения в гиперзвуковом прямоточном воздушно-реактивном двигателе включает сжатие воздуха в воздухозаборнике, подачу топлива в камеру сгорания перед воздухозаборником в зону, образованную между топливной форсункой, пилонами и воздухозаборником, горение топливовоздушной смеси и последующее расширение продуктов горения в сопле.
Недостатком известного технического решения является протяженная зона подготовки и горения топливовоздушной смеси и низкая тяга двигателя без стартового разгона.
Задачей заявленного изобретения является создание ГПВРД с высокими уровнем тяги и топливной эффективностью в условиях стартового разгона.
Технический результат, получаемый при осуществлении изобретения, заключается в улучшении массогабаритных характеристик летательного аппарата с ГПВРД.
Решение поставленной задачи и технический результат достигаются тем, что в гиперзвуковом прямоточном воздушно-реактивном двигателе, содержащем корпус, воздухозаборник с центральным телом, камеру сгорания, топливную форсунку, расположенную перед воздухозаборником и соединенную пилонами с ним, воспламенитель, сопло и систему управления, в прямоточной части двигателя установлен твердотопливный картридж с воздушными каналами, фиксатором положения и воспламенителем, соединенным с системой управления. Топливная форсунка установлена в центральном теле воздухозаборника и выполнена в виде газоструйного резонатора с острой передней кромкой, вход которого совмещен с носовой частью центрального тела и обращен навстречу набегающему потоку воздуха, внутренняя полость газоструйного резонатора соединена с топливной системой и его задняя и боковая стенки выполнены пористыми с управляемой скважностью.
Решение поставленной задачи и технический результат достигаются тем, что в способе организации рабочего процесса в гиперзвуковом прямоточном воздушно-реактивном двигателе, включающем сжатие воздуха в воздухозаборнике, подачу топлива в камеру сгорания, генерирование внутренних ударных волн в проточной части двигателя, горение топливовоздушной смеси в камере сгорания, расширение продуктов горения в сопле и регулирование режима горения в камере сгорания, сжигают твердотопливный заряд картриджа, подают в камеру сгорания через топливную форсунку нанодисперсное топливо, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора навстречу набегающему потоку воздуха и через его пористые стенки с задержкой по времени на величину 0,1-0,9 Тт, где Тт - время полного сгорания твердотопливного заряда картриджа, и создают пульсирующий режим горения топливовоздушной смеси в камере сгорания с частотой в диапазоне от 100 до 4000 герц.
На фигуре 1 приведена схема заявленного гиперзвукового прямоточного воздушно-реактивного двигателя. Двигатель содержит корпус 1, воздухозаборник 2 с центральным телом 3, камеру сгорания 4, воспламенитель 5, сопло 6, топливную форсунку 7, соединенную пилонами 8 с воздухозаборником 2 и выполненную в виде газоструйного резонатора 9 с острой передней кромкой 10, вход которого совмещен с носовой частью центрального тела 3 и обращен навстречу набегающему потоку воздуха 11. Внутренняя полость 12 газоструйного резонатора 9 соединена с топливной системой двигателя 13. Стенки 14 газоструйного резонатора 9 выполнены пористыми с управляемой скважностью. В проточной части двигателя установлен твердотопливный картридж 15 с воздушными каналами 16, фиксатором положения 17 и воспламенителем 5, соединенным с системой управления 19.
Заявленный способ организации рабочего процесса в гиперзвуковом прямоточном воздушно-реактивном двигателе осуществляют следующим образом. Воспламенитель 5 после команды системы управления 19 поджигает твердотопливный заряд картриджа 15. Двигатель выводят на уровень тяги стартового разгона, набегающий поток воздуха 11 сжимают в воздухозаборнике 2, направляют в зону горения по воздушным каналам 16 и интенсифицирует процесс горения. В зависимости от программы полета и заданного темпа набора скорости в камеру сгорания 4 подают нанодисперсное топливо 20, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора 9 навстречу набегающему потоку 11 воздуха и через его пористые стенки 14 с задержкой по времени на величину 0,1-0,9 от времени полного сгорания твердотопливного заряда картриджа Тт. С помощью газоструйного резонатора 9 формируют пульсирующий режим топливопитания камеры сгорания 4 в частотном диапазоне от 100 до 4000 герц с интенсивным процессом смешения и подготовки к горению топливовоздушной смеси. После полного выгорания твердотопливного заряда картриджа 15 и завершения стартового разгона в проточной части двигателя генерируют систему внутренних ударных волн 18, способствующей переходу на двухстадийный режим горения с пульсирующей детонацией и высокой полнотой сгорания топлива.
Таким образом, преимуществом заявленного гиперзвукового прямоточного воздушно-реактивного двигателя и способа организации рабочего процесса в нем является возможность обеспечить двухстадийный режим горения с пульсирующей детонацией, высокой полнотой сгорания топлива, повышенной топливной эффективностью и улучшить массогабаритные характеристики летательного аппарата с ГПВРД.
Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД) содержит корпус, воздухозаборник с центральным телом, внутри которого установлена топливная форсунка в виде газоструйного резонатора с острой передней кромкой, соединенной пилонами с воздухозаборником, камеру сгорания, воспламенитель, сопло, систему управления и твердотопливный картридж для стартового разгона. Способ организации рабочего процесса в ГПВРД заключается в сжигании твердотопливного заряда картриджа, сжатии воздуха в воздухозаборнике, генерировании внутренних ударных волн в проточной части двигателя, подаче в камеру сгорания через топливную форсунку нанодисперсного топлива, содержащего углеродные нанотрубки с капсулированным в них водородом, организации пульсирующего режима горения топливовоздушной смеси в камере сгорания с частотой в диапазоне от 100 до 4000 герц, расширении продуктов горения в сопле и регулировании режима горения. Изобретение направлено на повышение темпа набора скорости, улучшение полноты сгорания топлива и совершенствование массогабаритных характеристик летательного аппарата с ГПВРД. 2 н.п. ф-лы, 1 ил.
1. Гиперзвуковой прямоточный воздушно-реактивный двигатель, содержащий корпус, воздухозаборник с центральным телом, камеру сгорания, топливную форсунку, соединенную пилонами с воздухозаборником, воспламенитель, сопло и систему управления, отличающийся тем, что в проточной части двигателя установлен твердотопливный картридж с воздушными каналами, фиксатором положения и воспламенителем, соединенным с системой управления, топливная форсунка установлена в центральном теле воздухозаборника и выполнена в виде газоструйного резонатора с острой передней кромкой, вход которого совмещен с носовой частью центрального тела и обращен навстречу набегающему потоку воздуха, внутренняя полость газоструйного резонатора соединена с топливной системой и его задняя и боковая стенки выполнены пористыми с управляемой скважностью.
2. Способ организации рабочего процесса в гиперзвуковом прямоточном воздушно-реактивном двигателе, включающий сжатие воздуха в воздухозаборнике, подачу топлива в камеру сгорания через топливную форсунку перед воздухозаборником, генерирование внутренних ударных волн в проточной части двигателя, горение топливовоздушной смеси в камере сгорания, расширение продуктов горения в сопле и регулирование режима горения, отличающийся тем, что сжигают твердотопливный заряд картриджа, в камеру сгорания через топливную форсунку перед воздухозаборником подают нанодисперсное топливо, содержащее углеродные нанотрубки с капсулированным в них водородом двумя потоками: через вход газоструйного резонатора навстречу набегающему потоку воздуха и через его пористые стенки с задержкой по времени на величину 0,1-0,9 от времени полного сгорания твердотопливного заряда картриджа и создают пульсирующий режим горения топливовоздушной смеси в камере сгорания с частотой в диапазоне от 100 до 4000 герц.
RU 226200 C2, 10.10.2006 | |||
0 |
|
SU243243A1 | |
Вяжущее для дорожного строительства | 1986 |
|
SU1375601A1 |
MORIZE), 19.04.1921 | |||
КОМБИНИРОВАННЫЙ РАКЕТНО-ПРЯМОТОЧНЫЙ ДВИГАТЕЛЬ | 1992 |
|
RU2015390C1 |
DE 3644020 A1, 02.07.1987 | |||
US 5085048 A, 02.02.1992 |
Авторы
Даты
2014-10-10—Публикация
2013-08-05—Подача