ЦЕПНОЙ КАПЛЕОТДЕЛИТЕЛЬ ДЛЯ МАССООБМЕННЫХ КОЛОНН Российский патент 2014 года по МПК B01J19/32 B01D53/00 

Описание патента на изобретение RU2532178C1

Область техники, к которой относится изобретение

Устройство предназначено для отделения газовой (паровой) фазы от захваченных капель жидкости в колонных массообменных газожидкостных аппаратах.

Уровень техники

Для отделения (сепарации) потока газа (пара) от капель широко применяются кольца Рашига внавал, слоем устанавливаемые на решетке в верхней части аппарата [1, 2]. Общим с предлагаемой конструкцией является кольцевидная форма элементов и наличие решетки. Недостатком является очень большое гидравлическое сопротивление, создаваемое кольцами Рашига.

В качестве каплеотделителя используется также сеточная насадка, предназначенная для сепарации (отделения) газа (пара) от капель [3]. Она представляет собой рукава сетки, свернутые в рулон.

Общим с предлагаемой конструкцией является наличие в структуре сетки замкнутых элементов, расположенных вертикально.

Недостатки сеточной насадки: затрудненное стекание жидкости по насадке вниз, а также эффект «губки», когда насадка начинает аккумулировать и не выпускать жидкость, что влияет на эффективность отделения, а также создает большое сопротивление (в случае накопления жидкости).

В качестве прототипа выбрано изобретение, раскрытое в RU 2035991 C1, 27.05.1995, из которого известен каплеотделитель для массообменных колонн, включающий замкнутые элементы, причем замкнутые элементы представляют собой кольца одинакового размера, собранные в цепи одинаковой длины. Общим с предлагаемой конструкцией является наличие замкнутых элементов (колец), собранных в цепи.

Недостатком прототипа является повышенный каплеунос потоком газа и повышенный повторный каплеунос.

Раскрытие изобретения

Задачей изобретения является создание нового высокоэффективного не создающего большого гидравлического сопротивления каплеотделителя для отделения газа (пара) от захваченных капель жидкости в колонных массообменных газожидкостных аппаратах.

Техническим результатом изобретения является снижение каплеуноса потоком газа (пара), повышение производительности установки за счет уменьшения гидравлического сопротивления.

Устранение указанных недостатков и достижение заявляемого технического результата от реализации цепного каплеотделителя для массообменных колонн, содержащего цепи из замкнутых элементов (колец), обеспечивается за счет того, что кольца разного размера собраны в цепи разной длины (2 - короткие цепи, 3 - длинные цепи), цепи подвешены к решетке (1) (фиг.1). Используются цепи двух видов - длинные и короткие. Размер кольца длинной цепи увеличивается книзу цепи так, как показано на фиг.1. Нижнее кольцо цепи - самое большое в диаметре. Второе кольцо, считая от нижнего конца цепи, имеет диаметр в 1,5-2 раза меньше диаметра нижнего кольца. Третье кольцо, считая от нижнего кольца цепи, имеет диаметр в 1,5-2 раза меньше диаметра второго кольца. Все последующие кольца имеют одинаковый диаметр, равный диаметру третьего кольца, считая от нижнего конца цепи. Короткие цепи в 1,2 раза короче длинных цепей и состоят из разных по диаметру колец. Диаметр нижнего кольца короткой цепи равен диаметру нижнего кольца длинной цепи. Второе кольцо короткой цепи, считая от нижнего конца короткой цепи, имеет диметр в 1,5-2 раза меньше диаметра нижнего кольца короткой цепи. Все остальные кольца - одного диаметра, который в 1,5-2 раза меньше диаметра второго кольца. Указанное соотношение размеров колец и длин цепей позволяет оптимально расположить цепи по сечению колонны, обеспечить эффективное отделение газа от капель жидкости и снизить каплеунос потоком газа (пара). Длинные и короткие цепи расположены в поперечном сечении колонны в шахматном порядке, причем соотношение числа длинных цепей к числу коротких цепей 1:1, то есть 50% длинных цепей и 50% коротких. Длина длинной цепи равна расстоянию между решеткой 1 (фиг.1) и верхним распределительным устройством жидкости 5. Число длинных цепей в продольном осевом сечении колонны (показанном на фиг.1) определяется из условия: n=D/d, где D - внутренний диаметр колонны, м; d - диаметр нижнего звена длинной цепи; n - число длинных цепей в продольном осевом сечении колонны. Диаметр нижнего кольца длинной цепи выбирается из диапазона 0,02-0,06 м. Диаметр нижнего кольца длинной цепи выбирается из указанного диапазона в зависимости от нагрузки колонны по газу (пару), величины брызгоуноса и свойств газа (пара) и жидкости.

Для предотвращения повторного уноса концы длинных цепей 3 касаются верхнего распределительного устройства жидкости. В этом случае струя жидкости, стекающая с цепи, попадает сразу на верхнее распределительное устройство жидкости. На фиг.1 стенки колонны обозначены 4, верхнее распределительное устройство жидкости обозначено 5. Верхнее распределительное устройство состоит из труб с отверстиями для прохода жидкости. Жидкость поступает в верхнее распределительное устройство жидкости и выходит из него через отверстия в виде множества струй. Верхнее распределительное устройство 5 предназначено для равномерного распределения жидкости по сечению аппарата.

Краткое описание чертежей

Фиг.1. Цепной каплеотделитель для массообменных колонн. На фиг.1 приведена схема цепного каплеотделителя для массообменных колонн.

Отличительной особенностью заявляемого изобретения является то, что цепи выполнены разной длины, причем кольца, составляющие цепи, имеют разный диаметр, увеличивающийся книзу цепи, и концы длинных цепей касаются верхнего распределительного устройства жидкости.

Цепной каплеотделитель располагают в верхней части колонных массообменных газожидкостных аппаратов (абсорберов, десорберов, ректификационных колонн). Принцип действия устройства заключается в том, что при прохождении потока газа (пара) через цепной каплеотделитель направление движения газа непрерывно изменяется вследствие кривизны каналов, образованных цепями. Вследствие инерционных сил капли оседают на поверхности цепей и стекают пленкой по звеньям цепей вниз. Цепи имеют разную длину. Крупные низко расположенные кольца предназначены для улавливания самых крупных капель жидкости. Мелкие кольца, расположенные на более высоком уровне, улавливают мелкие капли. Это позволяет снизить каплеунос потоком газа (пара). Для предотвращения повторного уноса концы длинных цепей касаются верхнего распределительного устройства жидкости.

Цепной каплеотделитель имеет высокий свободный объем (до 0,93), что позволяет снизить гидравлическое сопротивление и увеличить производительность.

Сопоставительный анализ прототипа и заявляемого устройства показывает, что его отличительной особенностью является то, что кольца имеют разный размер, собраны в цепи разной длины, которые подвешены вертикально к решетке, причем концы длинных цепей соприкасаются с верхним распределительным устройством жидкости.

Осуществление изобретения

Экспериментальные исследования на лабораторной установке показали, что цепной каплеотделитель обладает в 7-8 раз меньшим гидравлическим сопротивлением, чем кольца Рашига и большей удельной поверхностью (до 500 м23).

Данное устройство обладает малым гидравлическим сопротивлением за счет того, что жидкость не задерживается на звеньях, а свободно стекает вниз. Это позволяет увеличить производительность установки за счет снижения гидравлического сопротивления. Цепной каплеотделитель позволяет снизить каплеунос (или унос жидкости) из аппарата потоком газа (пара).

Литература

1. Касаткин А.Г. Основные процессы и аппараты химической технологии. - М.: 1973, 754 с.

2. Дытнерский Ю.И. Основные процессы и аппараты химической технологии. Пособие по проектированию. Москва, Химия, 1983 г., с.272.

3. Интернет-сайт: www.metaprom.ru.

Похожие патенты RU2532178C1

название год авторы номер документа
НАСАДОЧНЫЙ АППАРАТ ДЛЯ МАССООБМЕННЫХ ПРОЦЕССОВ 2011
  • Бальчугов Алексей Валерьевич
  • Рыжов Станислав Олегович
  • Кузора Игорь Евгеньевич
RU2465957C1
ПАКЕТНАЯ ВИХРЕВАЯ НАСАДКА ДЛЯ ТЕПЛО- И МАССООБМЕННЫХ КОЛОННЫХ АППАРАТОВ 2010
  • Кадыров Рафис Фаизович
  • Блиничев Валерьян Николаевич
  • Чагин Олег Вячеславович
  • Кадыров Руслан Рафисович
RU2416461C1
МАССООБМЕННЫЙ АППАРАТ 2017
  • Астановский Дмитрий Львович
  • Астановский Лев Залманович
  • Астановская Оксана Валерьевна
  • Кустов Павел Владимирович
  • Розенштейн Владимир Анатольевич
RU2647029C1
АППАРАТ ДЛЯ ОЧИСТКИ ГАЗОВ 1996
  • Кочетков А.Ю.
  • Швыдкий В.Д.
  • Кочеткова Р.П.
  • Боровский В.М.
  • Грайвер М.А.
  • Перетокин А.Я.
  • Прокофьев Г.И.
  • Панфилова И.В.
RU2103053C1
Насадка массообменного аппарата 2021
  • Черных Олег Львович
  • Костыря Алексей Валерьевич
  • Вожаков Александр Михайлович
RU2781909C1
НАСАДОЧНАЯ КОЛОННА 2006
  • Голованчиков Александр Борисович
  • Гермашева Юлия Сергеевна
  • Дулькина Наталия Александровна
  • Дулькин Александр Борисович
  • Кокорина Надежда Геннадьевна
RU2310504C1
НАСАДКА ДЛЯ МАССООБМЕННЫХ АППАРАТОВ 2008
  • Муравьев Евгений Васильевич
  • Соколов Андрей Сергеевич
  • Саенко Николай Дмитриевич
  • Лагуткин Михаил Георгиевич
  • Данилов Юрий Борисович
  • Сулима Анатолий Николаевич
  • Данилов Дмитрий Юрьевич
  • Тошинский Владимир Ильич
  • Медяник Андрей Викторович
RU2370311C1
Устройство для тепломассообмена и очистки газа 1979
  • Андреев Владимир Иванович
  • Приходько Вадим Петрович
  • Важненко Александр Иванович
SU860796A1
МАССООБМЕННАЯ КОЛОННА С НИЗКИМ ГИДРАВЛИЧЕСКИМ СОПРОТИВЛЕНИЕМ ДЛЯ БОЛЬШИХ УДЕЛЬНЫХ НАГРУЗОК ПО ЖИДКОСТИ 1992
  • Слободяник И.П.
RU2036683C1
Многокамерный тепломассообменный аппарат 1981
  • Кореньков Владимир Иванович
  • Гольдштик Михаил Александрович
  • Дорохов Александр Романович
  • Казаков Владимир Ильич
  • Грицан Валерий Иванович
  • Азбель Анна Яковлевна
SU980745A1

Иллюстрации к изобретению RU 2 532 178 C1

Реферат патента 2014 года ЦЕПНОЙ КАПЛЕОТДЕЛИТЕЛЬ ДЛЯ МАССООБМЕННЫХ КОЛОНН

Изобретение относится к устройству, предназначенному для отделения газовой (паровой) фазы от захваченных капель жидкости в колонных массообменных газожидкостных аппаратах. Каплеотделитель для массообменных колонн включает кольца, собранные в цепи. Кольца имеют разный диаметр, при этом кольца собраны в цепи разной длины, которые подвешены вертикально к решетке, причем длинные цепи касаются нижним концом верхнего распределительного устройства жидкости. Устройство позволяет снизить каплеунос (или унос жидкости) из аппарата потоком газа (пара) и не создает большого гидравлического сопротивления. 1 ил.

Формула изобретения RU 2 532 178 C1

Каплеотделитель для массообменных колонн, включающий кольца, собранные в цепи, отличающийся тем, что кольца имеют разный диаметр, при этом кольца собраны в цепи разной длины, которые подвешены вертикально к решетке, причем длинные цепи касаются нижним концом верхнего распределительного устройства жидкости.

Документы, цитированные в отчете о поиске Патент 2014 года RU2532178C1

НАСАДОЧНАЯ КОЛОННА ДЛЯ КОНТАКТНЫХ АППАРАТОВ 1993
  • Жуков Б.Б.
  • Мустаев А.М.
  • Ивкин В.И.
  • Михальцов В.А.
  • Башев А.И.
RU2035991C1
В.Н.УЖОВ, А.Ю.ВАЛЬДБЕРГ, "Очистка газов мокрыми фильтрами", "Химия", М., 1972, стр
Эксцентричный фильтр-пресс для отжатия торфяной массы, подвергшейся коагулированию и т.п. работ 1924
  • Кирпичников В.Д.
  • Классон Р.Э.
  • Стадников Г.Л.
SU203A1
ГАЗОЖИДКОСТНЫЙ СЕПАРАТОР 1996
  • Сидягин А.А.
  • Чехов О.С.
  • Муров В.А.
RU2127630C1
Жалюзийный каплеуловитель 1979
  • Приходько Вадим Петрович
  • Исаев Владимир Николаевич
  • Сафонов Виктор Никифорович
  • Ермаков Анатолий Владимирович
SU889046A2
Перестраиваемый открытый резонатор 1982
  • Борулько Валентин Федорович
SU1107201A1
US 7841585 B2, 30.11.2010

RU 2 532 178 C1

Авторы

Бальчугов Алексей Валерьевич

Бадеников Артем Викторович

Кузора Игорь Евгеньевич

Даты

2014-10-27Публикация

2013-04-01Подача