Изобретение относится к радиотехнике, в частности к радиопеленгации, и может быть использовано для совмещенного поиска и пеленгования по угловым координатам множества работающих передатчиков, одновременно попадающих в текущую полосу приема. Способ основан на использовании фазовой информации об угловых координатах источников излучения при взаимодействии на нелинейном элементе полезного сигнала и помехи.
Известны фазовые способы пеленгации (патенты РФ №2134429, 2155352, 2175770, 2311656, Космические радиотехнические комплексы. Под ред. С.И. Бычкова. М.: Сов. радио, 1967. С.130-134, Пестряков В.Б. Фазовые радиотехнические системы (Основы статистической теории). М.: Сов. радио, 1968, С.45).
Из известных способов наиболее близким к предлагаемому является фазовый способ пеленгации (Космические радиотехнические комплексы. Под ред. С.И.Бычкова. М.: Сов. радио, 1967, С.130-134), который и выбран в качестве способа-прототипа. Данный способ основан на приеме сигналов на две антенны, удаленные друг от друга на расстояние d, усилении и ограничении, после чего в фазовом дискриминаторе производится сравнение фаз сигналов, прошедших два канала. Фазовый сдвиг определяется соотношением
где λ - длина волны, θ - угол между направлением на пеленгуемый источник излучения и нормалью к антенной базе.
Недостатком такого способа является низкая помехоустойчивость и точность пеленгации множества работающих передатчиков, одновременно попадающих в текущую полосу приема.
Предлагаемый подход базируется на использовании компонент-спутников взаимодействия на нелинейном элементе сигнала и помехи, которые при традиционном рассмотрении принципов построения фазового пеленгатора рассматривались как мешающие.
Комбинационные составляющие, возникающие при взаимодействии на нелинейных элементах сигналов, принятых на разнесенные антенны от одного и того же источника излучения, определим как собственные комбинационные составляющие. Комбинационные составляющие, образуемые взаимодействием на нелинейных элементах сигналов от различных излучателей, определим как взаимные комбинационные составляющие.
Предлагается реализация фазового пеленгатора с подстановкой частоты гетеродина, в котором для сохранения фазовых соотношений вводится дополнительный приемный канал с третьей антенной, а для обеспечения обзора по частоте используется синтезатор частот. При обычном подходе применение такой схемы, сводящей все сигналы из полосы обзора на частоту подстановки, препятствует обеспечению условий пеленгации источников излучения. Задача становится особенно сложной, если учесть, что при применении подстановки частоты гетеродина число комбинационных составляющих на выходе фазового дискриминатора перемножающего типа растет пропорционально четвертой степени от числа пеленгуемых источников. Комбинационные составляющие содержат все сочетания начальных фаз входных сигналов и поэтому результирующая пеленгационная характеристика может оказаться существенно деформированной. В этом случае задача определения угловых координат каждого источника излучения в многоцелевой ситуации становится еще более трудноразрешимой [3, 4].
Новый подход предполагает обзор по взаимным комбинационным составляющим на промежуточной частоте. При этом граница полосы обзора определяется максимальным разносом по частоте входных сигналов.
Задача изобретения - повышение помехоустойчивости и точности определения угловых координат при пеленгации источников излучения, одновременно попадающих в текущую полосу приема.
Поставленная задача достигается тем, что в фазовом способе пеленгации, основанном на приеме сигналов на две антенны, соответствующие первому и второму фазовым каналам, при этом антенны удалены друг от друга на расстояние d, усилении и ограничении, вводят третью приемную антенну на произвольном расстоянии от первой и второй антенн, усиливают и ограничивают входную смесь сигналов, принятых третьей антенной, перемножают смесь сигналов с третьей антенны с сигналом синтезатора частот, выделяют смесь сигналов на промежуточной частоте, снова перемножают выделенную смесь сигналов с входной смесью сигналов с первой антенны, выделяют взаимную комбинационную составляющую на комбинационной частоте, возникающую при взаимодействии на нелинейном элементе сигнала из смеси сигналов с первой антенны и помехи из смеси сигналов с третьей антенны, аналогичное преобразование смеси сигналов и выделение взаимной комбинационной составляющей на той же комбинационной частоте производят для второй антенны, при этом решение о наличии комбинационных составляющих на выходе каждого фазового канала принимают при превышении уровнем сигнала заранее установленного порога, затем для выделенной пары комбинационных составляющих на одной и той же частоте осуществляют измерение разности фаз, соответствующей времени запаздывания сигнала при приеме на первую и вторую антенны, затем вычисляют пеленгационный угол источника излучения, для выделения определенной комбинационной составляющей в каждом из фазовых каналов используются неперестраиваемые полосовые фильтры, при этом сканирование по диапазону осуществляется программируемым синтезатором частоты.
Технический результат изобретения заключается в повышении помехоустойчивости и точности определения угловых координат при пеленгации источников излучения, одновременно попадающих в текущую полосу приема.
На фиг.1 представлена схема фазового пеленгатора, обеспечивающего работу предлагаемого способа. Принимаемая смесь сигналов на антенны 1, 2 и 3 через широкополосные входные фильтры 4, 5 и 6, полоса пропускания которых охватывает всю полосу обзора, подается на первый 7, второй 8 и третий 9 преобразователи частоты соответственно, на второй вход третьего преобразователя частоты 9 подается сигнал с синтезатора частот 10, выход третьего преобразователя частоты 9 соединен с входом первого полосового фильтра 11, настроенного на промежуточную частоту, ширина полосы пропускания которого соответствует ширине полосы обзора, выход первого полосового фильтра 11 соединен с вторыми входами первого 7 и второго 8 преобразователей частоты, вход второго полосового фильтра 12, настроенного на выделение взаимной комбинационной составляющей на комбинационной частоте в первом фазовом канале, соединен с выходом первого преобразователя частоты 7, а выход - с первым входом фазометра 14, вход третьего полосового фильтра 13, настроенного на выделение взаимной комбинационной составляющей на комбинационной частоте во втором фазовом канале, соединен с выходом второго преобразователя частоты 8, а выход - с вторым входом фазометра 14.
Поясним предлагаемый способ. Сигналы, принятые антеннами 1, 2 и 3 и поступающие через широкополосные фильтры 4, 5 и 6 на входы преобразователей частоты 7, 8 и 9 соответственно, определим в виде:
с выхода антенны 1: ,
с выхода антенны 2: ,
с выхода антенны 3: ,
где , - амплитуда сигнала, принятого от ν-го источника на антенну 1, - амплитуда сигнала, принятого от ν-го источника на антенну 2, - амплитуда сигнала, принятого от ν-го источника на антенну 3, ων - частота ν-того источника излучения, , и - начальные фазы для ν-того сигнала, принятого разнесенными антеннами 1, 2 и 3 фазового пеленгатора соответственно, n - число источников излучения. Запишем сигнал синтезатора частот 10 в форме
UГ(t)=UmГsin[ФГ(t)],
где ФГ(t)=ωГt+ψГ, ωГ - частота сигнала синтезатора частот, ψГ - его начальная фаза.
Третья антенна дополнительно вводится с той целью, чтобы на возникающих взаимных комбинационных составляющих сохранялись фазовые соотношения между сигналами, принятыми на антенны 1 и 2. Справедливость данного утверждения будет показана ниже. При этом фазы сигналов, принятых третьей антенной, не используются в вычислении пеленгационных углов, поэтому местоположение данной антенны не имеет значения, важно лишь, чтобы на данную антенну осуществлялся прием той же смеси сигналов, что и антеннами 1 и 2.
Следовательно, разность фаз для ν-го источника определяется выражением
.
Пусть полосовой фильтр 11 выделяет сигнал разностной частоты при перемножении сигналов U3 и UГ в третьем преобразователе частоты 9:
.
Запишем преобразование смеси сигналов после прохождения первого 7 и второго 8 преобразователей частоты, принимая во внимание только разностную промежуточную частоту:
,
.
Из выражений для сигналов U7 и U8 видно, что n составляющих двойной суммы при совпадении индексов λ=ν (собственные комбинационные составляющие) содержат начальные фазы
и
,
,
.
Измерение для каждой пары составляющих разностей фаз на комбинационной частоте (Ωνλ+ωГ) с помощью фазометра 14 дает . Вышесказанное поясняется фиг.2 для случая двух сигналов.
Рассмотрим возможность повышения помехоустойчивости и точности определения угловых координат источников излучения. Предлагаемый нетрадиционный подход позволяет улучшить условия измерения для слабых сигналов в присутствии сильной помехи в канале приема. А именно уровни взаимных комбинационных составляющих, несущие полезную информацию об угловых координатах, как для сильного, так и для слабого сигналов, совпадают (фиг.2). При этом происходит «подчеркивание» слабого сигнала за счет сильного.
Покажем это для случая двух радиосигналов на входе фазового пеленгатора, примем Um1>Um2, ω1>ω2. Уровни взаимных комбинационных составляющих относительно
Строго говоря, происходит «выравнивание» уровней комбинационных составляющих, несущих полезную информацию о разности фаз для слабого и сильного сигналов, по сравнению с исходным превышением сильного сигнала над слабым. Это обеспечивает лучшие условия измерения разности фаз для слабого сигнала при той же интенсивности помехи, чем при работе по собственным комбинационным составляющим. Тем самым повышается помехоустойчивость фазового способа пеленгации к сильным помехам и увеличивается точность определения угловых координат.
Приведенные выше рассуждения могут быть распространены и на случай, когда число источников излучения n>2. Тогда относительный уровень сигналов на входе можно определить формулой kνλ=Umλ/Umν, где за ν-тый выбран источник, от которого сигнал, принимаемый пеленгатором, наиболее интенсивный.
Следовательно, в случае многоцелевой ситуации (n>1) происходит сглаживание величин относительных интенсивностей, измеренных по уровням взаимных комбинационных составляющих, относительно уровней собственных комбинационных составляющих для этих же источников, определяющих режим работы при одноцелевой ситуации.
Источники информации
1. Космические радиотехнические комплексы. Под ред. С.И.Бычкова. М.: Сов. радио, 1967. С.130-134.
2. Пестряков В.Б. Фазовые радиотехнические системы (Основы статистической теории). М.: Сов. радио, 1968, С.45.
3. Золотарев И.Д., Березовский В.А. Фазовый пеленгатор со схемой подстановки частоты гетеродина при работе по множественной цели, Омск: ОмГТУ, Омский научный вестник, 2009 г, №3 (83) - С.260-264.
4. Zolotarev I.D., Berezovskiy V.A., Privalov D.D. Signal Analysis at the Phase Discriminator Output of the Phase Direction Finder Circuit with the Frequency Substitution. - International Conference on Actual Problems of Electronic instrument Engineering Proceedings, APEIE-2010. - Novosibirsk: NSTU, September 22-24, 2010, V.1. - P.18-22.
название | год | авторы | номер документа |
---|---|---|---|
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ | 2011 |
|
RU2482508C2 |
ФАЗОВЫЙ ПЕЛЕНГАТОР | 2012 |
|
RU2526533C2 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2175770C1 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2155352C1 |
СПОСОБ АВТОКОРРЕЛЯЦИОННОГО ПРИЕМА ШУМОПОДОБНЫХ СИГНАЛОВ | 2005 |
|
RU2296432C1 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2290658C1 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2365931C2 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2427853C1 |
ПЕЛЕНГАТОР | 1990 |
|
RU2006872C1 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2009 |
|
RU2426143C1 |
Изобретение относится к радиопеленгации. Достигаемый технический результат - повышение помехоустойчивости и точности определения угловых координат. Указанный результат достигается за счет того, что способ пеленгации основан на приеме сигналов на две антенны, соответствующие первому и второму фазовым каналам, при этом антенны удалены друг от друга на расстояние d, усилении и ограничении, кроме того, вводят третью приемную антенну на произвольном расстоянии от первой и второй антенн, усиливают и ограничивают входную смесь сигналов, принятых третьей антенной, перемножают смесь сигналов с третьей антенны с сигналом синтезатора частот, выделяют смесь сигналов на промежуточной частоте, снова перемножают выделенную смесь сигналов с входной смесью сигналов с первой антенны, выделяют взаимную комбинационную составляющую (КС) на комбинационной частоте, возникающую при взаимодействии на нелинейном элементе сигнала из смеси сигналов с первой антенны и помехи из смеси сигналов с третьей антенны, аналогичное преобразование смеси сигналов и выделение взаимной КС на той же комбинационной частоте производят для второй антенны, при этом решение о наличии комбинационных составляющих на выходе каждого фазового канала принимают при превышении уровнем сигнала заранее установленного порога, затем для выделенной пары комбинационных составляющих на одной и той же частоте осуществляют измерение разности фаз, соответствующей времени запаздывания сигнала при приеме на первую и вторую антенны, вычисляют пеленгационный угол источника излучения. 3 ил.
Фазовый способ пеленгации, основанный на приеме сигналов на две антенны, соответствующие первому и второму фазовым каналам, при этом антенны удалены друг от друга на расстояние d, усилении и ограничении, отличающийся тем, что вводят третью приемную антенну на произвольном расстоянии от первой и второй антенн, усиливают и ограничивают входную смесь сигналов, принятых третьей антенной, перемножают смесь сигналов с третьей антенны с сигналом синтезатора частот, выделяют смесь сигналов на промежуточной частоте, снова перемножают выделенную смесь сигналов с входной смесью сигналов с первой антенны, выделяют взаимную комбинационную составляющую на комбинационной частоте, возникающую при взаимодействии на нелинейном элементе сигнала из смеси сигналов с первой антенны и помехи из смеси сигналов с третьей антенны, аналогичное преобразование смеси сигналов и выделение взаимной комбинационной составляющей на той же комбинационной частоте производят для второй антенны, при этом решение о наличии комбинационных составляющих на выходе каждого фазового канала принимают при превышении уровнем сигнала заранее установленного порога, затем для выделенной пары комбинационных составляющих на одной и той же частоте осуществляют измерение разности фаз, соответствующей времени запаздывания сигнала при приеме на первую и вторую антенны, затем вычисляют пеленгационный угол источника излучения, для выделения определенной комбинационной составляющей в каждом из фазовых каналов используются неперестраиваемые полосовые фильтры, при этом сканирование по диапазону осуществляется программируемым синтезатором частоты.
Космические радиотехнические комплексы | |||
Под ред | |||
БЫЧКОВА С.И | |||
Москва, Советское радио, 1967, с | |||
Реверсивный дисковый культиватор для тросовой тяги | 1923 |
|
SU130A1 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2290658C1 |
СПОСОБ ОБНАРУЖЕНИЯ ЖИВЫХ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2006 |
|
RU2313108C2 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2365931C2 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ И ФАЗОВЫЙ ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2155352C1 |
ФАЗОВЫЙ СПОСОБ ПЕЛЕНГАЦИИ | 1997 |
|
RU2134429C1 |
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ КООРДИНАТ ИСТОЧНИКА РАДИОИЗЛУЧЕНИЯ | 2005 |
|
RU2283505C1 |
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ ШАГОВЫЙ ДВИГАТЕЛЬ | 1996 |
|
RU2167486C2 |
US 4062015 A, 06.12.1977 | |||
WO 2006087783 A1, 24.08.2006 |
Авторы
Даты
2014-11-10—Публикация
2013-01-09—Подача