ФЛУОРЕСЦЕНТНО-МЕЧЕНЫЙ ОЛИГОНУКЛЕОТИДНЫЙ ЗОНД MS8 Flip-R ДЛЯ ИДЕНТИФИКАЦИИ ВОЗБУДИТЕЛЯ ГИСТОПЛАЗМОЗА Histoplasma capsulatum Российский патент 2014 года по МПК C12P19/30 C12Q1/68 

Описание патента на изобретение RU2532845C1

Изобретение относится к биотехнологии, молекулярной биологии и может быть использовано в медицине для выявления генетического материала возбудителя гистоплазмоза Histoplasma capsulatum в пробах как для диагностики в практическом здравоохранении и службе Роспотребнадзора, так и для научных исследований.

Гистоплазмоз - инфекционное заболевание, вызываемое диморфными грибами, относящимися к роду Н. capsulatum. В эндемичных областях условия окружающей среды представлены умеренным климатом с постоянной влажностью. Ареалами существования Н. capsulatum в естественных условиях служат многие азиатские страны, такие как Индонезия, Тайланд, Индия. Высокоэндемичные очаги Histoplasma capsulatum var. capsulatum - возбудителя классического (американского) гистоплазмоза, расположены вдоль реки Миссисипи (США), в Латинской Америке (Венесуэла, Эквадор, Бразилия, Парагвай, Уругвай, Аргентина). Histoplasma capsulatum var. duboisii - вариант африканского гистоплазмоза, эндемичен для тропических районов Африки. Еще один представитель рода Histoplasma, Histoplasma capsulatum var. farciminosum, вызывает эпизоотический лимфангоит у лошадей, ослов, мулов и в патологии людей какого-либо существенного значения не имеет. Ареал распространения включает средиземноморские страны, Северную Африку и государства Азии (Индия, Пакистан, Япония).

Возбудителя гистоплазмоза относят к агентам II группы патогенности, все работы с ними строго регламентированы СП 1.3.1285-03 «Безопасность работы с микроорганизмами I-II групп патогенности (опасности)». Манипуляции с данными грибами могут проводиться только в специализированных учреждениях, квалифицированными специалистами, имеющими опыт работы с возбудителями особо опасных инфекций.

Метод полимеразной цепной реакции является прямым методом выявления ДНК данных микромицетов и обладает высокой специфичностью и чувствительностью. В основе метода ПЦР лежит природный процесс репликации ДНК - комплементарное достраивание ДНК матрицы, осуществляемое с помощью фермента ДНК-полимеразы.

Процесс удвоения нуклеиновых кислот можно использовать для получения копий коротких участков ДНК, специфичных для конкретных микроорганизмов, т.е. осуществлять целенаправленный поиск таких специфических участков, что и является целью генодиагностики для выявления возбудителя гистоплазмоза.

Для эффективного проведения ПЦР необходимы праймеры - синтетические олигонуклеотиды определенного размера, специфические для каждого типа возбудителей. Праймеры комплементарны последовательностям ДНК на левой и правой границах специфического фрагмента и ориентированы таким образом, что достраивание новой цепи ДНК протекает только между ними. В результате ПЦР происходит многократное увеличение числа копий (амплификация) специфического участка гена, катализируемое ферментом ДНК-полимеразой. Выбор специфического фрагмента и подбор праймеров играет важнейшую роль в специфичности проведения амплификации, что сказывается на качестве проведения анализа исследуемых микромицетов.

При детекции продуктов амплификации использование специальных флуоресцентных меток позволяет отказаться от стадии электрофореза, что не только сокращает время проведения анализа, но и снижает риск перекрестной контаминации продуктами ПЦР и, соответственно, уменьшает число ложноположительных результатов. Поскольку регистрация результатов проводится непосредственно в процессе реакции амплификации, весь анализ можно проводить в одной-двух комнатах лаборатории силами одного сотрудника. Этот подход позволяет проводить автоматическую интерпретацию полученных результатов и снимает проблему субъективной оценки электрофореграмм. Существует несколько флуоресцентных технологий, различающихся по способам генерации репортерной флуоресценции. В данной заявке используются зонды с комплементарными концевыми последовательностями по типу «молекулярных маяков» (molecular beacons).

Наиболее близким аналогом являются олигонуклеотидные зонды, разработанные для выявления продуктов амплификации в режиме реального времени J. Martagon-Villamil с соавторами в 2003 году. Авторы используют 2 зонда с резонансным переносом энергии (LightCycler assay). Принцип метода основан на переносе энергии с одного флуорофора, находящегося на 3′-конце первого зонда, ко второму флуорофору, находящемуся на 5′- конце второго зонда. Излучение детектируется при одновременном связывании обоих зондов с ДНК-матрицей. В качестве ДНК-мишеней для выявления возбудителя гистоплазмоза были выбраны спейсерные области рибосомальных генов [Identification of Histoplasma capsulatum from culture extracts by real-time PCR / Martagon-Villamil J., Shrestha N., Sholtis M., et al. // J. Clin. Microbiol. - 2003. - Vol.41, №3, - p.1295-1298].

S.J. Buitrago с соавторами в 2009 году предложили использование двух гибридизационных зондов для одновременного обнаружения ДНК Н. capsulatum и Paracoccidioides brasiïiensis методом ПЦР в режиме реального времени (патент №ЕР 2339026). В качестве ДНК-мишеней авторы выбрали спейсерные области рибосомальных генов. Однако, данные фрагменты генома, как правило, являются высококонсервативными у близкородственных микромицетов, что может приводить к ложноположительным результатам при проведении анализа.

Целью настоящего изобретения является разработка олигонуклеотидного зонда для флуоресцентной детекции результатов анализа методом полимеразной цепной реакции при идентификации H. capsulatum в режиме реального времени.

Цель достигается конструированием специфичного олигонуклеотида, имеющего структуру «шпильки» с флуорофором и гасителем флуоресценции на концах и обладающего комплементарностью к продукту реакции амплификации с праймерами HcMs8s/HcMs8as3 (патент №2464318):

MS8 Flip-R5/(ROX)-GGCCTGACCAGTATAACCAAGGCC-(BHQ2)3/

Где ROX - карбокси-Х-родамин, флуоресцентный краситель, длина волны поглощения которого сотавляет 580 нм, а длина волны флуоресценции - 605 нм. BHQ2 - гаситель флуоресценции с диапазоном гашения 550-650 нм.

Характеристика олигонуклеотидного зонда и ДНК-мишени для его гибридизации.

Основываясь на данных, представленных в базе GenBank NCBI (National Center for Biotechnology Information), был подобран олигонуклеотид, обладающий активностью гибридизационного зонда по типу «молекулярного маяка» к фрагменту генома возбудителя гистоплазмоза, фланкированному праймерами HcMs8s-HcMs8as3. Данный зонд обеспечивает флуоресцентную детекцию продуктов амплификации фрагмента гена MS8 (mold-specific MS8 protein) (GenBank NCBI, AY049031), кодирующего белок H. capsulatum, экспрессия которого происходит в мицелиальной фазе. Протеин ms8 участвует в образовании клеточной стенки гиф, придавая ей гидрофильность и гибкость.

В качестве положительного контроля эксперименты проводили на штаммах H.capsulatum var. capsulatum 6650, 6651, 6652, H. capsulatum var. duboisii 630, 638, H. capsulatum var. farciminosum 12-89, используя для выделения ДНК обеззараженные суспензии микромицета в концентрациях от 1×106 клеток/мл до 1×101 клеток/мл. Подсчет клеток дрожжевой фазы проводили в камере Горяева. Апробация флуоресцентного зонда была осуществлена на наборе штаммов возбудителя гистоплазмоза коллекционного центра МЖК ФКУЗ Волгоградский научно-исследовательский противочумный институт Роспотребнадзора.

Чувствительность реакции амплификации с флуоресцентно-меченым зондом MS8 Flip-R оценивалась при исследовании проб ДНК, выделенных из десятикратных разведений чистых культур возбудителя гистоплазмоза, и составила- 1×102-1×104 клеток/мл.

Для обнаружения возбудителя гистоплазмоза методом ПЦР в режиме реального времени оценена возможность использования сконструированного олигонуклеотидного зонда для анализа биологического материала (кровь, суспензия органов, искусственно контаминированные клетками Н. capsulation). Показано, что использование разработанного зонда при постановке реакции амплификации позволяет выявлять ДНК возбудителей гистоплазмоза с чувствительностью 1×104 кл/мл.

Примеры конкретного выполнения.

Пример 1. Методика конструирования флуоресцентно-меченого олигонуклеотидного зонда MS8 Flip-R для идентификации ДНК возбудителя гистоплазмоза методом ПЦР с флуоресцентной детекцией.

На основе анализа in silico нуклеотидной последовательности фрагмента гена MS8 возбудителя гистоплазмоза, фланкированной праймерами HcMs8s/HcMs8as3 и имеющей длину 361 п.н., сконструирован гибридизационный зонд размером 24 п.н. (таблица 1).

Полученный олигонуклеотид был проанализирован с помощью компьютерной программы Vector NTI Express v.1.1.2 (Life Technologies, США) на предмет образования вторичных структур с праймерами HcMs8s/HcMs8as3, а также с использованием ресурса BLAST на web-сервере Национального Центра Биотехнологической Информации (NCBI) (http://www.ncbi.nlm.nih.gov/BLAST/) для установления гомологии между ним и нуклеотидными последовательностями близкородственных возбудителей особо опасных микозов и гетерологичных микроорганизмов, присутствующих в базах данных (EMBL, GenBank, DDBJ). На момент проведения компьютерного анализа, гомологии выявлено не было.

Пример 2. Детекция специфических фрагментов ДНК с помощью разработанного зонда MS8 Flip-R для идентификации ДНК возбудителя гистоплазмоза методом ПЦР в режиме реального времени.

В состав реакционных смесей, помимо анализируемой ДНК, входили комплементарные специфическому фрагменту ДНК Н. capsulatum олигонуклеотидные зонды, меченые флуорофором ROX и гасителем флуоресценции (BHQ2), а также праймеры HcMs8s/HcMs8as3, дезоксирибонуклеозидтрифосфаты, буферный раствор и фермент Taq-F-ДНК-полимераза. Праймеры и зонд для внутреннего контроля использовали при проверке тест-систем на специфичность и при анализе способов выделения ДНК. В качестве отрицательного контроля в пробирку вместо образца вносили такой же объем дистиллированной воды.

Амплификацию продолжительностью 45 циклов проводили в объеме 25 мкл с использованием «горячего старта».

Анализ продуктов ПЦР осуществляли в режиме реального времени на приборе «Rotor-Gene 6000» («Corbett Research», Австралия). Регистрацию результатов проводили в табличной и графической форме с помощью компьютерных программ. Результаты оценивали по наличию или отсутствию пересечения кривой флуоресценции с пороговой линией, что определяется значением порогового цикла «Ct» в соответствующей графе в таблице результатов (рис.1).

Пример 3. Определение чувствительности и специфичности реакции амплификации в режиме реального времени с помощью разработанного флуоресцентно-меченого олигонуклеотидного зонда для идентификации ДНК возбудителя гистоплазмоза.

Чувствительность реакции амплификации с разработанным гибридизационным зондом MS8 Flip-R оценивалась при исследовании проб ДНК, выделенных из десятикратных разведений клеток чистых культур возбудителя гистоплазмоза.

Обеззараживание исследуемых проб производили добавлением раствора мертиолята натрия до конечной концентрации 0,1%, прогреванием в течение 40 мин при температуре 56°С и инкубированием при комнатной температуре 24 ч. Выделение ДНК из чистых культур микромицетов осуществляли с помощью метода гуанидинтиоцианат-фенольной экстракции с переосаждением ДНК изопропанолом (Sandhu G.S. et al., 1995). Постановку реакции ПЦР осуществляли как описано в примере 2. При тестировании коллекции грибных культур Н. capsulatum ФКУЗ Волгоградский научно-исследовательский противочумный институт Роспотребнадзора с использованием разработанного флуоресцентно-меченого олигонуклеотидного зонда MS8 Flip-R продукт амплификации детектировался с ДНК всех штаммов возбудителя гистоплазмоза с чувствительностью 1×102-1×104 клеток/мл (рис.1). С другими видами близкородственных грибов и гетерологичных микроорганизмов в реакции ПЦР с разработанными праймерами в 100% случаев получен отрицательный результат.

Таким образом, разработанный гибридизационный зонд может быть использован для идентификации возбудителя гистоплазмоза и позволяет в короткий срок с высокой чувствительностью и специфичностью детектировать ДНК возбудителя гистоплазмоза в чистой культуре и биологическом материале.

Таблица 1 Характеристика сконструированного флуоресцентно-меченого олигонуклеотидного зонда для идентификации возбудителя гистоплазмоза H. capsulatum Наименование зонда Последовательность праймеров Локализация флуоресцентный краситель/гаситель флуоресценции MS8 Flip-R GGCCTGACCAGTATAACCAAGGCC ген MS8 (mold-specific MS8 protein) ROX/BHQ2

Похожие патенты RU2532845C1

название год авторы номер документа
ФЛУОРЕСЦЕНТНО-МЕЧЕНЫЙ ОЛИГОНУКЛЕОТИДНЫЙ ЗОНД PR-SOW ДЛЯ ИДЕНТИФИКАЦИИ ВОЗБУДИТЕЛЯ КОКЦИДИОИДОМИКОЗА Coccidioides posadasii 2013
  • Савченко Сергей Сергеевич
  • Ткаченко Галина Александровна
  • Гришина Марина Анатольевна
  • Антонов Валерий Алексеевич
RU2539108C1
НАБОР ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ И ФЛУОРЕСЦЕНТНО-МЕЧЕНОГО ЗОНДА ДЛЯ ИДЕНТИФИКАЦИИ ВОЗБУДИТЕЛЯ БЛАСТОМИКОЗА BLASTOMYCES DERMATITIDIS 2016
  • Ткаченко Галина Александровна
  • Савченко Сергей Сергеевич
  • Маркин Александр Михайлович
  • Антонов Валерий Алексеевич
RU2639498C1
НАБОР ФЛУОРЕСЦЕНТНО-МЕЧЕНЫХ ОЛИГОНУКЛЕОТИДНЫХ ЗОНДОВ ДЛЯ ТИПИРОВАНИЯ ШТАММОВ Burkholderia mallei МЕТОДОМ АМПЛИФИКАЦИИ ДИФФЕРЕНЦИРУЮЩИХ ФРАГМЕНТОВ ДНК 2014
  • Бондарева Ольга Сергеевна
  • Савченко Сергей Сергеевич
  • Ткаченко Галина Александровна
  • Леденева Маргарита Леонтьевна
  • Антонов Валерий Алексеевич
RU2551227C1
ОЛИГОНУКЛЕОТИДНЫЕ ПРАЙМЕРЫ ДЛЯ ИДЕНТИФИКАЦИИ ВОЗБУДИТЕЛЯ ГИСТОПЛАЗМОЗА HISTOPLASMA CAPSULATUM 2011
  • Савченко С.С.
  • Ткаченко Г.А.
  • Вьючнова Н.В.
  • Гришина М.А.
  • Антонов В.А.
RU2464318C1
НАБОР ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ И ФЛУОРЕСЦЕНТНО-МЕЧЕНОГО ЗОНДА ДЛЯ ИДЕНТИФИКАЦИИ ВИРУСА ЗАПАДНОГО НИЛА 2 ГЕНОТИПА 2019
  • Батурин Артем Александрович
  • Ткаченко Галина Александровна
  • Шпак Иван Михайлович
RU2715617C1
НАБОР ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ И ФЛУОРЕСЦЕНТНО-МЕЧЕНОГО ЗОНДА ДЛЯ ИДЕНТИФИКАЦИИ ДНК ВОЗБУДИТЕЛЕЙ КОКЦИДИОИДОМИКОЗА COCCIDIOIDES IMMITIS И COCCIDIOIDES POSADASII 2015
  • Леденева Маргарита Леонтьевна
  • Ткаченко Галина Александровна
  • Савченко Сергей Сергеевич
  • Антонов Валерий Алексеевич
RU2583001C1
НАБОР ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ И ФЛУОРЕСЦЕНТНО-МЕЧЕНОГО ЗОНДА ДЛЯ ИДЕНТИФИКАЦИИ ГЕНЕТИЧЕСКОГО МАТЕРИАЛА РИККЕТСИЙ МЕТОДОМ ПЦР В РЕАЛЬНОМ ВРЕМЕНИ 2015
  • Карташов Михаил Юрьевич
  • Микрюкова Тамара Петровна
  • Терновой Владимир Александрович
  • Локтев Валерий Борисович
RU2581952C1
Набор олигонуклеотидных праймеров и зондов для идентификации вируса клещевого энцефалита, вируса лихорадки Западного Нила, боррелий и риккетсий методом мультиплексной ПЦР в режиме реального времени 2016
  • Семенцова Александра Олеговна
  • Терновой Владимир Александрович
  • Чуб Елена Владимировна
  • Карташов Михаил Юрьевич
  • Локтев Валерий Борисович
RU2629604C1
Способ выявления ДНК вируса нодулярного дерматита (LSDV) в биологическом материале животных с помощью полимеразной цепной реакции в режиме реального времени 2019
  • Черных Олег Юрьевич
  • Малышев Денис Владиславович
  • Баннов Василий Александрович
  • Кривонос Роман Анатольевич
  • Лысенко Александр Анатолиевич
  • Кощаев Андрей Георгиевич
  • Чернов Альберт Николаевич
  • Шевченко Александр Алексеевич
  • Хахов Латиф Асланбиевич
  • Вацаев Шахаб Вахидович
  • Черных Владимир Олегович
  • Лысенко Юрий Андреевич
  • Дробин Юрий Дмитриевич
  • Шевкопляс Владимир Николаевич
  • Дмитрив Николай Иванович
  • Исаева Альбина Геннадьевна
  • Гулюкин Михаил Иванович
  • Семенов Владимир Григорьевич
  • Стекольников Анатолий Александрович
  • Барашкин Михаил Иванович
  • Василевич Федор Иванович
  • Ларионов Сергей Васильевич
RU2719719C1
Набор олигонуклеотидных праймеров и флуоресцентно-меченых зондов и способ выявления ДНК возбудителей сапа и мелиоидоза методом ПЦР с детекцией продукта в режиме реального времени 2019
  • Щит Ирина Юрьевна
  • Бикетов Сергей Федорович
RU2738358C1

Иллюстрации к изобретению RU 2 532 845 C1

Реферат патента 2014 года ФЛУОРЕСЦЕНТНО-МЕЧЕНЫЙ ОЛИГОНУКЛЕОТИДНЫЙ ЗОНД MS8 Flip-R ДЛЯ ИДЕНТИФИКАЦИИ ВОЗБУДИТЕЛЯ ГИСТОПЛАЗМОЗА Histoplasma capsulatum

Изобретение относится к биотехнологии и молекулярной биологии. Предложен олигонуклеотидный зонд MS8 Flip-R для флуоресцентной детекции возбудителя гистоплазмоза Histoplasma capsulatum методом полимеразной цепной реакции с олигонуклеотидными праймерами HcMs8s, HcMs8as3, имеющий следующую структуру: MS8 Flip-R 5'(ROX)-GGCCTGACCAGTATAACCAAGGCC-(BHQ2) 3', где ROX - флуоресцентный краситель карбокси-Х-родамин, BHQ2 - гаситель флуоресценции "Black Hole 2". Изобретение может быть использовано в медицине для выявления генетического материала возбудителя гистоплазмоза - H. capsulatum в пробах, для диагностики в здравоохранении и для научных исследований, поскольку позволяет в короткий срок с высокой чувствительностью и специфичностью детектировать ДНК H.

capsulatum в пробах чистых культур и биологическом материале. 1 ил., 1 табл., 3 пр.

Формула изобретения RU 2 532 845 C1

Олигонуклеотидный зонд MS8 Flip-R для флуоресцентной детекции возбудителя гистоплазмоза Histoplasma capsulatum методом полимеразной цепной реакции с олигонуклеотидными праймерами HcMs8s, HcMs8as3, имеющий следующую структуру: MS8 Flip-R 5'(ROX)-GGCCTGACCAGTATAACCAAGGCC-(BHQ2) 3',
где ROX - флуоресцентный краситель карбокси-Х-родамин, BHQ2 - гаситель флуоресценции "Black Hole 2".

Документы, цитированные в отчете о поиске Патент 2014 года RU2532845C1

US 5693501 A, 02.12.1997
US 20050065330 A1, 24.03.2005
ОЛИГОНУКЛЕОТИДНЫЕ ПРАЙМЕРЫ ДЛЯ ИДЕНТИФИКАЦИИ ВОЗБУДИТЕЛЯ ГИСТОПЛАЗМОЗА HISTOPLASMA CAPSULATUM 2011
  • Савченко С.С.
  • Ткаченко Г.А.
  • Вьючнова Н.В.
  • Гришина М.А.
  • Антонов В.А.
RU2464318C1

RU 2 532 845 C1

Авторы

Савченко Сергей Сергеевич

Ткаченко Галина Александровна

Вьючнова Надежда Васильевна

Гришина Марина Анатольевна

Антонов Валерий Алексеевич

Даты

2014-11-10Публикация

2013-07-26Подача