Изобретение относится к биотехнологии, в частности к генетической инженерии, и может быть использовано в медицинской практике в виде набора для выявления генетического материала риккетсий в гомогенатах клещей или клинических образцах для уточнения диагноза, а также для решения эпидемиологических и научно-исследовательских задач по изучению распространения риккетсий в природных очагах с различной эпидемической активностью. Использование специфичных праймеров и зондов позволяет выявлять генетический материал риккетсий в исследуемых образцах методом полимеразной цепной реакции (ПЦР) с гибридизационно-флуоресцентной детекцией в режиме реального времени.
Риккетсии представляют собой мелкие полиморфные α-протеобактерии, являющиеся облигатными внутриклеточными паразитами эукариотических клеток. Многие виды риккетсий являются возбудителями различных инфекционных заболеваний человека, распространенных по всему миру [Parola P., Paddock C.D., Socolovschi C., Labruna M.B., Mediannikov O., Kernif T., Abdad M.Y., Stenos J., Bitam I., Fournier P.E., Raoult D. Update on tick-borne rickettsioses around the world: a geographic approach // Clinical Microbiology Reviews. 2013. 26(4). P. 657-702].
На территории Российской Федерации регистрируется заболеваемость североазиатским клещевым риккетсиозом (риккетсиоз Средней Азии, сибирский клещевой тиф), Астраханской пятнистой лихорадкой и дальневосточным клещевым риккетсиозом [Тарасевич И.В. Современные представления о риккетсиях // Клиническая микробиология и антимикробная терапия. 2005. Т.7, № 2. С. 119-129]. Североазиатский клещевой риккетсиоз, возбудителем которого является R. sibirica, регистрируется преимущественно на юге Западной и Восточной Сибири, Дальнего Востока, а также в Казахстане, Киргизстане, Монголии и Китае [Шпынов С.Н. Эколого-эпидемиологические и молекулярно-генетические аспекты изучения природных очагов риккетсиозов и эрлихиозов в России: дис…док. мед. наук / С.Н. Шпынов. - Омск., 2004. - 204 с.]. R. conorii subsp. cuspia является возбудителем Астраханской пятнистой лихорадки, эпидемически активные очаги которой располагаются в Астраханской области и смежных с ней территориях (Калмыкия, Волгоградская область) [Tarasevich I.V., Makarova V.A., Fetisova N.F., Stepanov A.V., Miskarova E.D., Balayeva N., Raoult D. Astrakhan fever, a spotted-fever rickettsiosis // Lancet. 1991. 337(8734). - P. 172-173]. Дальневосточный клещевой риккетсиоз, вызываемый R. heilongjiangensis, встречается в Хабаровском крае и Амурской области [Mediannikov O.Y., Sidelnikov Y., Ivanov L., Mokretsova E., Fournier P.E., Tarasevich I., Raoult D. Acute tick-borne rickettsiosis caused by Rickettsia heilongjiangensis in Russian Far East // Emerging Infectious Diseases. 2004. № 10(5). P. 810-817]. Современные исследования, проводимые с использованием молекулярно-биологических методов позволили обнаружить в клещах, собранных на территории России, генетический материал и других патогенных для человека видов риккетсий (R. slovaca, R. raoultii, R. helvetica, R. aeschlimannii, R. tarasevichiae) [Rydkina E., Roux V., Fetisova N., Rudakov N., Gafarova M., Tarasevich I., Raoult D. New Rickettsiae in Ticks Collected in Territories of the Former Soviet Union // Emerging Infectious Diseases. 1999. Vol. 5, № 6. P. 811-814.; Rudakov N.V., Shpynov S.N., Samoilenko I.E., Tankibaev M.A. Ecology and epidemiology of spotted fever group Rickettsiae and new data from their study in Russia and Kazakhstan // Annals of the New York Academy of Sciences. 2003. Vol. 990. P. 12-24.; Shpynov S.N., Fournier P.E., Rudakov N.V., Samoilenko I.E., Reshetnikova T.A., Yastrebov V.K., Schaiman M.S., Tarasevich I.V., Raoult D. Molecular identification of a collection of spotted Fever group rickettsiae obtained from patients and ticks from Russia // American Journal Of Tropical Medicine And Hygiene. 2006. № 74(3). P. 440-443]. В зависимости от генетических особенностей как возбудителя, так и пациента клиническая картина риккетсиозов может сильно изменяться, что существенно затрудняет диагностику этой группы инфекционных заболеваний. Поэтому в диагностике риккетсиозов особое значение имеют лабораторные методы анализа, в том числе и молекулярно-биологические. Совершенствование этих методов принципиально важно для более быстрой и надежной диагностики риккетсиозов, в том числе протекающих с атипичной симптоматикой, для идентификации различных видов риккетсий, а также откроет новые возможности для мониторинга природных очагов риккетсиозов.
Известен способ определения ДНК риккетсиеподобного микроорганизма "Montezuma" (таксономическое положение определено только до принадлежности к порядку Rickettsiales) путем проведения двухраундовой ПЦР (патент РФ №2233888, МПК С12Q 1/68, опубл. 10.08.2004 г.). Проведение ПЦР в два раунда, с одной стороны, увеличивает ее чувствительность и специфичность, с другой, значительно увеличивает время проведения анализа, а также его себестоимость. В основе метода определения ДНК возбудителя, описываемого в патенте, лежит ПЦР с электорфоретической детекцией. Детекция накопления ампликонов осуществляется при открывании пробирки с исследуемым материалом, что увеличивает риск получения ложноположительных результатов из-за контаминации проб и реагентов продуктами амплификации. Существенное количество манипуляций с исследуемым образцом увеличивает затраты времени на анализ и повышает вероятность ошибок [Иванов М.К., Порываев В.Д., Кандрушин Е.В. Особенности количественного анализа методом полимеразной цепной реакции в режиме реального времени // "Новости "Вектор-Бест" № 4(50) 2008]. Предлагаемый в патенте РФ №2233888 набор олигонуклеотидных праймеров предназначен для идентификации гена 16S rRNA. Этот ген, исходя из своих биологических функций, является крайне консервативным (гомология различных видов риккетсий по этому гену составляет 97,2 - 99,9%). Идентификация гена 16S rRNA для первичной идентификации риккетсий в членистоногих переносчиках сопряжена с высокой вероятностью контаминации.
Известен метод детекции генетического материала риккетсий с помощью гибридизации олигонуклеотидных зондов с ДНК риккетсий (патент США №5976791, МПК C12Q1/68, опубл. 02.11.1999 г.). Метод не предназанчен для выявления R. tarasevichiae и R. raoultii. Для идентификации вида риккетсии в биологическом образце предлагаемый метод подразумевает проведение реакции обратной транскрипции 16S rRNA, что увеличивает стоимость и время проведения анализа.
Наиболее близким аналогом (прототипом) является набор праймеров (94 олигонуклеотидных праймера) для детекции целого ряда возбудителей инфекционных заболеваний, переносимых клещами (заявка США №20110104696, МПК C12Q1/68, опубл. 05.05.2011 г.). Среди них есть представители риккетсий, но набор праймеров не предназначен для детекции R. tarasevichiae и R. raoultii, которые широко распространены на территории Российской Федерации. Кроме того, предлагаемый протокол подразумевает проведение ПЦР в 50 мкл реакционной смеси, а время элонгации составляет 1 минуту 40 секунд, что приводит к значительным затратам на анализ и суммарному времени проведения анализа.
Техническим результатом заявляемого технического решения является создание набора специфичных олигонуклеотидных праймеров и зонда для выявления генетического материала нескольких видов риккетсий, в том числе R. tarasevichiae и R. raoultii, в гомогенатах клещей, клинических образцах и биологических жидкостях, распространенных на территории Российской Федерации методом ПЦР с гибридизационно-флуоресцентной детекцией в режиме реального времени.
Указанный технический результат достигается созданием набора олигонуклеотидных праймеров и флуоресцентно-меченого зонда для идентификации генетического материала риккетсий методом ПЦР в реальном времени, содержащего последовательности олигонуклеотидов, видоспецифичных к риккетсиям:
- прямой праймер (PrF_gltA) 5`→3`:
5'-GGCTTCGGTCATCGTGT-3' (17 н)
- обратный праймер (PrR_gltA) 5`→3`:
5'-TTGCTATTTGTAAGAGCGGATTG-3' (23 н)
- флуоресцентно-меченый ДНК-зонд Z(ROX)_gltA 5`→3`:
ROX-CCACGTGCCGCAGTACTTAAAGAAAC-BHQ2' (26 н)
Диагностические праймеры и флуоресцентно-меченый зонд конструировались на участок гена цитратсинтазы риккетсий и оптимизации концентраций компонентов реакционной смеси и условий проведения ПЦР, что обеспечивает заявляемому техническому решению соответствие критериям «новизна» и «изобретательский уровень». Для контроля амплификации были получены рекомбинантные плазмиды, содержащие нуклеотидную последовательность фрагмента гена цитратсинтазы.
Изобретение поясняется следующими графическими материалами. На фиг. 1 представлена зависимость интенсивности флуоресценции от концентрации рекомбинантной плазмиды в реакции (концентрация выражена в геном-эквивалентах на реакцию).
Описание получения набора праймеров и зонда. Для анализа и конструирования праймеров в международной базе данных GenBank (http://www.ncbi.nlm.nih.gov/genbank/) были выбраны следующие нуклеотидные последовательности гена цитратсинтазы: R. prowazekii (CP004888), R. typhi (AE017197), R. sibirica (JX945526), R. asiatica (AB297810), R. helvetica (KM288467), R. raoultii (EU036985), R. rickettsii (DQ150686), R. slovaca (U59725), R. conorii subsp. caspia (U59728), R. aeschlimannii (DQ235776), R. peacockii (DQ100162), R. japonica (AY743327), R. heilongjiangensis (AB473812), R. tarasevichiae (DQ168981), R. canadensis (U59713). Сравнительный анализ и выравнивание нуклеотидных последовательностей были проведены с использованием пакетов программ MEGA 6.06 и DNASTAR Lasergene 7.0. Анализ известных последовательностей гена цитратсинтазы позволил найти достаточно консервативные участки, пригодные для дизайна диагностических олигонуклеотидных праймеров и зонда. Дизайн олигонуклеотидов выполняли с помощью программы PerlPrimer v1.1.21 и VectorNTI 8. Анализ свойств олигонуклеотидных праймеров и зондов проводился с использованием программы Vector NTI 8.
Для идентификации генетического материала риккетсий методом ПЦР в реальном времени были подобраны праймеры и зонд, представленные ниже в таблице 1:
Таблица 1. Состав праймеров и зонд, используемые для заявляемого набора
Пример 1. Проверка аналитической чувствительности набора праймеров и зонда
Для контроля амплификации был получен положительный контрольный образц (ПКО), представляющий собой рекомбинантную плазмиду, несущую фрагмент гена цитратсинтазы, являющийся матрицей для амплификации спецефических ДНК-фрагментов.
Для определения аналитической чувствительности из концентрированного раствора плазмидной ДНК были приготовлены последовательные 10-кратные разведения. Определение концентрации ДНК осуществляли спектрофотометрически с помощью флуориметра «Qubit 2.0» («Invitrogen», США). ПЦР в режиме реального времени для детекции генетического материала риккетсий проводили на приборе DT-lite («ДНК-Технология», Россия), детекцию результатов амплификации (фиг. 1) осуществляли по каналу ROX (поглощение λ=585 нм; флуоресценция λ=610 нм). На фиг. 1 представлена зависимость интенсивности флуоресценции от концентрации рекомбинантной плазмиды в реакции (концентрация выражена в геном-эквивалентах на реакцию).
Минимальное количество ДНК-матриц, детектируемое в ПЦР после оптимизации условий проведения реакции, выраженное в ГЭ (геномных эквивалентах), составило 80 ГЭ в образце.
Эксперимент по определению аналитической чувствительности был повторен с использованием ДНК-полимераз различных фирм-производителей на приборах как плашечного типа (DT-lite («ДНК-Технология», Россия) и CFX96 Touch («Bio-Rad», США)), так и на приборе роторного типа - Rotor Gene 6000 («Corbett Research», Австралия). Результаты эксперимента приведены в таблице 2. Показано, что для обнаружения ДНК риккетсий с заявляемой чувствительностью возможно применение как Smart, так и Taq ДНК-полимераз.
Зависимость значений Ct от концентрации рекомбинантной плазмиды при ее выявлении с использованием различных видов ДНК-полимераз и детекцией результатов на различных приборах.
Медиген
СибЭнзим
Медиген
Пример 2. Проверка специфичности набора праймеров и зондов
Специфичность разработанного набора праймеров и зонда определялась в два этапа. На первом этапе специфичность праймеров и ДНК-зонда была проанализирована с использованием поисковой системы BLAST в режиме online. Нуклеотидные последовательности праймеров/зонда проверяли на наличие гомологии со всеми известными нуклеотидными последовательностями в международной базе данных GenBank. Выбранные праймеры и ДНК-зонд не имели гомологии с человеческой ДНК. На втором этапе аналитическая специфичность была оценена нами экспериментально. Для этого была использована панель, содержащая геномную ДНК человека, мыши, клещей различных видов (Ixodes persulcatus, Ixodes pavlovskyi, Ixodes ricinus, Dermacentor reticulatus, Hyalomma anatolicum), возбудителей других инфекций, передающихся клещами (Anaplasma phagocytophilum, Ehrlichia muris, Ehrlichia canis, Borrelia burgdorferi, Borrelia afzelii, Borrelia garinii, Babesia divergens, Babesia microti, кДНК вируса клещевого энцефалита штаммов 205 и Коларово-2008). Отрицательные результаты ПЦР-РВ анализа с каждым из вышеперечисленных образцов позволяют оценить специфичность набора по использованной выборке образцов как 100 %.
Пример 3. Определение ДНК риккетсий в образцах клещей, отловленных в Новосибирской области
В исследование было взято 305 клещей (Ix. persulcatus, Ix. pavlovskyi - 220; Dermacentor spp. - 85), отловленных на территории Новосибирской области.
Приготовление суспензий клещей осуществляли растиранием в ступке с 300 мкл фосфатно-солевого буфера (pH 7,4). Процедуру выделения ДНК из исследуемого материала проводили с использованием набора реагентов «Рибо-ПРЕП» (ФГУН ЦНИИЭ Роспотребнадзора) в соответствии с инструкцией по применению.
ПЦР в режиме реального времени проводили в реакционной смеси следующего состава (на 1 исследование):
ПЦР в режиме реального времени и регистрацию результатов проводили в приборе DT-lite («ДНК-Технология», Россия) по следующей программе, представленной в таблице 3.
Таблица 3. Программа проведения ПЦР
Измерение флуоресценции осуществляли при температуре 60°С на канале ROX (поглощение λ=585 нм; флуоресценция λ=610 нм).
Результаты интерпретировали на основании наличия (или отсутствия) пересечения кривой флуоресценции с установленной на соответствующем уровне пороговой линией, что соответствует наличию (или отсутствию) значения порогового цикла Ct в соответствующей графе в таблице результатов. Результат считали положительным в случае, если кривая накопления флуоресценции для соответствующего образца имела характерную «сигмовидную» форму и пересекала пороговую линию.
По результатам исследования уровень зараженности риккетсиями клещей видов Ix. persulcatus и Ix. pavlovskyi в Новосибирской области составил 13,1±2,2 %; клещей рода Dermacentor 38,2±5,4%. Все положительные образцы были генотипированы путем секвенирования/определения нуклеотидной последовательности фрагмента гена цитратсинтазы. Показано, что предлагаемый набор праймеров позволяет надежно выявлять различные генетические варианты как минимум четырех видов риккетсий, распространенных на территории России (R. sibirica, R. raoultii, R. helvetica и R. tarasevichiae).
Таким образом, вышеизложенные материалы подтверждают достижение заявленного технического результата, связанного с созданием набора специфичных олигонуклеотидных праймеров и зонда для выявления генетического материала риккетсий, в том числе R. tarasevichiae и R. raoultii, в гомогенатах клещей, клинических образцах и биологических жидкостях, распространенных на территории Российской Федерации методом ПЦР с гибридизационно-флуоресцентной детекцией в режиме реального времени.
название | год | авторы | номер документа |
---|---|---|---|
СРЕДСТВО ДЛЯ ПОЛУЧЕНИЯ ПРЕПАРАТОВ ДЛЯ ДИАГНОСТИКИ РИККЕТСИОЗА, ВЫЗЫВАЕМОГО RICKETTSIA RAOULTII ГЕНОТИПА DnS28 | 2015 |
|
RU2616287C1 |
Набор олигонуклеотидных праймеров и зондов для идентификации вируса клещевого энцефалита, вируса лихорадки Западного Нила, боррелий и риккетсий методом мультиплексной ПЦР в режиме реального времени | 2016 |
|
RU2629604C1 |
СРЕДСТВО ДЛЯ ПОЛУЧЕНИЯ ПРЕПАРАТОВ ДЛЯ ДИАГНОСТИКИ РИККЕТСИОЗА, ВЫЗЫВАЕМОГО RICKETTSIA RAOULTII ГЕНОТИПА DnS14 | 2017 |
|
RU2704449C2 |
НАБОР ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ И ФЛУОРЕСЦЕНТНО-МЕЧЕНОГО ЗОНДА ДЛЯ ИДЕНТИФИКАЦИИ ВИРУСА ЗАПАДНОГО НИЛА 2 ГЕНОТИПА | 2019 |
|
RU2715617C1 |
Набор олигонуклеотидных праймеров и флуоресцентно-меченого зонда в формате TaqMan для выявления вирусов рода Flavivirus методом ПЦР в режиме реального времени | 2022 |
|
RU2808520C1 |
НАБОР ОЛИГОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ И ФЛУОРЕСЦЕНТНО-МЕЧЕНОГО ЗОНДА ДЛЯ ИДЕНТИФИКАЦИИ ВИРУСА ЗАПАДНОГО НИЛА 4 ГЕНОТИПА (WEST NILE VIRUS LINEAGE 4) | 2020 |
|
RU2737396C1 |
Набор олигодезоксирибонуклеотидных праймеров и флуоресцентно-меченого зонда для идентификации РНК коронавируса человека 2019-nCoV методом ПЦР с гибридизационно-флуоресцентной детекцией в режиме реального времени | 2020 |
|
RU2734300C1 |
НАБОР СИНТЕТИЧЕСКИХ ОЛИГОДЕЗОКСИРИБОНУКЛЕОТИДОВ ДЛЯ ДЕТЕКЦИИ ГЕНА msp4 РИККЕТСИИ Anaplasma marginale МЕТОДОМ ПОЛИМЕРАЗНОЙ ЦЕПНОЙ РЕАКЦИИ В РЕЖИМЕ "РЕАЛЬНОГО ВРЕМЕНИ" | 2015 |
|
RU2595427C2 |
НАБОР ОЛИГОДЕЗОКСИРИБОНУКЛЕОТИДНЫХ ПРАЙМЕРОВ И ФЛУОРЕСЦЕНТНО-МЕЧЕНЫХ ЗОНДОВ ДЛЯ ИДЕНТИФИКАЦИИ РНК МЕТАПНЕВМОВИРУСА ЧЕЛОВЕКА | 2013 |
|
RU2543149C2 |
Тест-система для выявления ДНК вируса нодулярного дерматита (LSDV) в биологическом материале животных с помощью полимеразной цепной реакции в режиме реального времени | 2019 |
|
RU2726242C1 |
Изобретение относится к биохимии. Описан набор олигонуклеотидных праймеров и флуоресцентно-меченого зонда для идентификации генетического материала риккетсий методом ПЦР в реальном времени. Набор содержит последовательности олигонуклеотидов, видоспецифичных к риккетсиям: прямой праймер (PrF_gltA) 5`→3`: 5'-GGCTTCGGTCATCGTGT-3' (17 н); обратный праймер (PrR_gltA) 5`→3`: 5'-TTGCTATTTGTAAGAGCGGATTG-3' (23 н); флуоресцентно-меченый ДНК-зонд Z(ROX)_gltA 5`→3`: ROX-CCACGTGCCGCAGTACTTAAAGAAAC-BHQ2' (26 н). Техническим результатом заявляемого изобретения является создание набора специфичных олигонуклеотидных праймеров и зонда для выявления генетического материала риккетсий, в том числе R. tarasevichiae и R. raoultii, в гомогенатах клещей, клинических образцах и биологических жидкостях, распространенных на территории Российской Федерации методом ПЦР с гибридизационно-флуоресцентной детекцией в режиме реального времени. 1 ил., 3 табл., 3 пр.
Набор олигонуклеотидных праймеров и флуоресцентно-меченого зонда для идентификации генетического материала риккетсий методом ПЦР в реальном времени, содержащий последовательности олигонуклеотидов, видоспецифичных к риккетсиям:
- прямой праймер (PrF_gltA) 5`→3`:
- обратный праймер (PrR_gltA) 5`→3`:
- флуоресцентно-меченый ДНК-зонд Z(ROX)_gltA 5`→3`:
US20110104696 A1, 05.05.2011 | |||
US0005976791 A1, 02.11.1999 | |||
ШТАММ РИККЕТСИЙ ГЕНОТИПА "CANDIDATUS RICKETTSIA TARASEVICHIAE" - КАНДИДАТ В НОВЫЙ ВИД, ИСПОЛЬЗУЕМЫЙ ДЛЯ ИДЕНТИФИКАЦИИ РИККЕТСИЙ И ПОЛУЧЕНИЯ ДИАГНОСТИЧЕСКИХ ПРЕПАРАТОВ | 2007 |
|
RU2354691C1 |
WO2009155103 A2, 23.12.2009. |
Авторы
Даты
2016-04-20—Публикация
2015-06-09—Подача