РЕАКТОР ДЛЯ АММОНИЗАЦИИ КИСЛОТ Российский патент 2014 года по МПК B01F3/04 B01F5/00 

Описание патента на изобретение RU2533713C1

Изобретение относится к оборудованию, используемому при производстве фосфорсеросодержащих удобрений. Основной стадией производства является стадия аммонизации кислот, где проходит образование пульпы фосфатов и/или сульфатов аммония.

В современных технологиях получения фосфатов и/или сульфатов аммония используются различные конструкции реакторов без механического перемешивания компонентов. Наиболее распространенными являются трубчатые реакторы, в которых происходит смешение и взаимодействие реагентов с образованием пульпы фосфатов и/или сульфатов аммония - полупродукта для получения минеральных удобрений.

Так, известен трубчатый реактор, представляющий собой горизонтальную или вертикальную трубу с патрубками для ввода кислот и аммиака, причем для обеспечения интенсивного гидродинамического режима протяженность реакционной зоны трубчатого реактора, начиная от места ввода аммиака, для надежного осуществления реакции аммонизации с учетом возможных колебаний расходов и концентраций реагентов должна составлять 20-30 диаметров. Это подтверждено опытом его эксплуатации (Химическое и нефтегазовое машиностроение №11/2008, с.11).

В авторском свидетельстве СССР №1084054, кл. B01F 3/04, опубл. в 1984 г. описан реактор, содержащий корпус с коаксильно расположенным в нем соплом, патрубками для ввода и вывода компонентов, в корпусе перпендикулярно оси установлена шайба с закрепленными в ней, с одной стороны, заборными патрубками длиной 0,3-1 диаметр аппарата на расстоянии 0,2-0,3 диаметра от его оси, свободные концы их направлены в сторону сопла, а с другой стороны - многозаходным спиральным лопастным устройством. В этой конструкции возможно значительное налипание пульпы на насадку, поэтому она эффективна только для растворов.

В промышленности давно эксплуатируется трубчатый реактор TP-200 с внутренним диаметром корпуса 200 мм, тангенциально расположенным вводом кислоты и коаксиально к корпусу расположенным патрубком аммиака, заканчивающимся перфорированным распределителем (200 радиальных отверстий диаметром 5 мм). Внутри распределителя установлен двухзаходный лопастной шнек, предназначенный для интенсивного закручивания струй аммиака. Эффект интенсификации смешения аммиака и ЭФК возрастает с увеличением нагрузки. Сложность изготовления, сравнительно малая производительность и значительный проскок аммиака не позволяют рекомендовать этот реактор для новых производств (Химическое и нефтегазовое машиностроение №11/2008, с.12).

Известен также трубчатый реактор для получения пульпы фосфатов аммония, включающий корпус с коаксиально расположенными в нем устройством, подводящим аммиак, патрубок, подводящий кислоту, и находящееся на конце корпуса сопло для выхода пульпы, в котором устройство, подводящее аммиак, выполнено в виде патрубка с установленным на конце распределителем. Часть распределителя снабжена наружной резьбой и соединена с патрубком подвода аммиака, а часть, не входящая в патрубок, перфорирована отверстиями, длина которых не менее двух диаметров отверстия, причем угол наклона осей отверстий к оси реактора составляет 45-90° по направлению к соплу выхода пульпы из корпуса (патент РФ №2360729, кл. B01F 3/04, опубл. 10.07.2009 г.).

Все описанные реакторы имеют один общий недостаток. Вследствие того, что реакционная зона находится в корпусе, для изготовления всей конструкции требуется коррозионно-стойкий материал. Принимая во внимание высокое давление, металлоемкость такой конструкции весьма значительна.

В связи с этим, в качестве прототипа нами был выбран реактор, приведенный в патенте США №3954942, C05B 7/00, опубл. 04.05.1976 г. Данный патент выдан на способ производства удобрения из фосфорной и серной кислот, жидкого или газообразного аммиака, но в нем приведен реактор, в котором происходит их взаимодействие.

Реактор для аммонизации кислот включает цилиндрический корпус из черной стали, внутри которого установлена реакционная труба из высоколегированной стали. Кольцевая полость корпуса с торцов закрыта заглушками, приваренными к корпусу и реакционной трубе. Корпус имеет патрубки входа и выхода аммиака, причем патрубок выхода из корпуса соединен с патрубком входа в реакционную трубу и находится вне корпуса. На реакционной трубе расположены также патрубки ввода кислот.

Преимущество данной конструкции заключается в том, что аммиак, проходя внутри корпуса вдоль реакционной трубы, нагревается и частично испаряется, что позволяет ему вступать в реакцию с кислотами сразу после контакта с ними, тем самым уменьшая проскок непрореагировавшего аммиака из реактора.

Недостатком данной конструкции является то, что реакционная труба сделана цельной, и поскольку ее конечные участки, выходящие за пределы корпуса, подвержены только внутреннему давлению, эта труба должна быть толстостенной, т.е. металлоемкость этой конструкции по сравнению с известными не снижается. Кроме того, конструкция громоздкая (наличие наружного патрубка перетока аммиака из корпуса в центральную трубу) и неразборная, т.е. неремонтопригодная, что осложняет ее эксплуатацию.

Задачей изобретения было упрощение конструкции за счет уменьшения металлоемкости реактора и улучшения условий его эксплуатации.

Для этого предлагается конструкция реактора, включающая толстостенный корпус из нелегированной стали, внутри которого расположена тонкостенная реакционная труба, не выходящая за корпус реактора и выполненная из высоколегированной стали. Корпус имеет только патрубок для ввода аммиака, который поступает в реакционную трубу через калиброванные фильеры, расположенные на ее стенке. Корпус по торцам закрыт съемными фланцами. Реакционная труба состоит из двух частей, телескопически соединенных друг с другом, что компенсирует неравномерное удлинение корпуса и реакционного патрубка, выполненных из различных материалов. На одном из фланцев приварены патрубок ввода кислот и часть реакционной трубы с фильерами, на другом - вторая часть реакционной трубы и толстостенный патрубок выхода продуктов реакции, причем сварной шов между этим патрубком и второй частью реакционной трубы расположен внутри корпуса.

Давление внутри и снаружи реакционной трубы одинаковое, что позволяет перенести усилие от давления реакции на толстостенный корпус, выполненный из более дешевого материала, т.е. выполнить реакционную трубу из высоколегированной стали и сделать реактор менее металлоемким. Конструкция реактора позволяет уменьшить его стоимость и повысить надежность за счет возможности контроля состояния и ремонта разборной конструкции.

На рисунке 1 изображен продольный разрез предлагаемого реактора.

Реактор включает следующие элементы: 1 - патрубок ввода кислоты в реакционную трубу; 2 - фланцы с прокладками, герметизирующие корпус реактора; 3 - толстостенный корпус из нестойкого к коррозии материала; 4 - патрубок ввода аммиака в корпус реактора; 5 - патрубок выхода продукта из реактора; 6 - тонкостенная реакционная труба из высоколегированной коррозионно-стойкой стали; 7 - сопла аммиака.

Реактор работает следующим образом: в корпус реактора (3), снабженного фланцами с прокладками (2), через патрубок (4) поступает аммиак, который распределяется по кольцевому сечению и через сопла (7) попадает в реакционную трубу (6), куда через патрубок (1) подводится кислота. Продукты реакции выводятся из реактора через патрубок (5).

Части реакционной трубы соединены телескопически. Такая конструкция позволяет сделать реактор разборным, т.е. ремонтопригодным. В предложенном реакторе сопла для ввода аммиака в реакционную трубу находятся вблизи стыка двух ее частей.

Для исключения возможности попадания продуктов реакции в корпус реактора сечение этих сопел должно быть меньше, чем сечение кольцевой зоны между корпусом и реакционной трубой. Сечение зазора между двумя частями реакционной трубы должно быть в 10-15 раз менее сечения сопел. Если это соотношение меньше 10, то продукты реакции могут поступать через зазор в корпус реактора и соприкасаться с его стенкой, что приведет к коррозии и потере работоспособности реактора. При соотношении сечений более 15 усложняется сборка реактора.

Соотношение свободных сечений корпуса и реакционной трубы составляет 1:1÷0,5. При уменьшении сечения корпуса относительно сечения реакционной трубы возрастает сопротивление, что приводит к увеличению давления в реакторе, т.е. это не выгодно энергетически, при увеличении свободного сечения корпуса возрастают габариты реактора, что, учитывая толщину корпуса (4,5-9 мм), увеличивает его материалоемкость. В прототипе, например, это соотношение составляет 4,6:1.

Соотношение диаметров реакционной трубы и патрубка выхода продукта составляет 1:0,8÷0,5. При увеличении диаметра патрубка свыше указанного соотношения перемешивание в реакторе ухудшается, что приводит к проскоку непрореагировавшего аммиака, а при уменьшении ниже указанного предела увеличивается давление, т.е. это не выгодно энергетически. В прототипе это соотношение 1:1.

Длина части реакционной трубы с соплами выбирается конструктивно и составляет 1,5÷2 длины части патрубка ввода кислоты, входящей внутрь реакционной трубы. При уменьшении длины этой части реакционной трубы уменьшается зона эффективного смешивания реагентов, что приводит к проскоку аммиака, при увеличении длины этой части реакционной трубы возрастает длина реактора.

Поскольку давление в реакторе с обеих сторон реакционной трубы одинаковое, ее делают с толщиной стенки, в 8-10 раз меньшей толщины стенок корпуса, что позволяет при использовании легированной стали (например, ЭИ 460) уменьшить стоимость реакционной трубы, а следовательно, и всего реактора в 2 - 2,5 раза без уменьшения времени его межремонтного пробега. В прототипе толщина корпуса и реакционной трубы одинаковые, т.к. оба находятся под внутренним давлением.

Похожие патенты RU2533713C1

название год авторы номер документа
РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ ПУЛЬПЫ ФОСФАТОВ АММОНИЯ 2012
  • Гришаев Игорь Григорьевич
RU2503495C1
ТРУБЧАТЫЙ РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ ПУЛЬПЫ ФОСФАТОВ АММОНИЯ 2008
  • Гришаев Игорь Григорьевич
  • Норов Андрей Михайлович
  • Голоус Владимир Иванович
  • Никитин Николай Ильич
RU2360729C1
ГАЗОЖИДКОСТНЫЙ РЕАКТОР 1992
  • Митрофанов А.Д.
  • Митрофанов А.А.
  • Митрофанова Е.А.
RU2046011C1
Аппарат для получения сложных удобрений 1982
  • Гришаев Игорь Григорьевич
  • Жданов Юрий Федорович
  • Назирова Лейла Замановна
  • Свирина Татьяна Петровна
  • Быковская Валентина Григорьевна
  • Стрельченок Владимир Степанович
  • Усов Геннадий Андреевич
  • Артюшкевич Иван Петрович
  • Первинкин Валерий Евгеньевич
  • Антохов Иван Игнатьевич
SU1084054A1
Реактор для химических процессов 1979
  • Муравин Константин Анатольевич
  • Заходякин Анатолий Андреевич
  • Зиновьев Виктор Антонович
SU931220A1
СПОСОБ ПОЛУЧЕНИЯ СУЛЬФОАММОФОСА 2009
  • Шарипов Тагир Вильданович
  • Мустафин Ахат Газизьянович
  • Володин Павел Николаевич
  • Усманов Рафкат Талгатович
RU2407727C1
СПОСОБ ПОЛУЧЕНИЯ УДОБРЕНИЯ, СОДЕРЖАЩЕГО АЗОТ, ФОСФОР И СЕРУ 2009
  • Ракчеева Лилиана Владимировна
  • Кладос Дмитрий Константинович
  • Кочеткова Вера Валентиновна
  • Кузьмичева Татьяна Николаевна
  • Злобина Евгения Петровна
  • Богач Евгений Владимирович
  • Классен Петр Владимирович
RU2408564C1
ГАЗОЖИДКОСТНЫЙ РЕАКТОР 1991
  • Митрофанов А.Д.
  • Митрофанов А.А.
  • Митрофанова Е.А.
RU2104772C1
Абсорбер 1980
  • Василенко Алексей Яковлевич
SU902798A1
ТРУБЧАТЫЙ РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ СЕРОСОДЕРЖАЩИХ АЗОТНЫХ УДОБРЕНИЙ 2006
  • Брукбауэр Кристина
  • Йегер Эммерих
RU2421276C2

Иллюстрации к изобретению RU 2 533 713 C1

Реферат патента 2014 года РЕАКТОР ДЛЯ АММОНИЗАЦИИ КИСЛОТ

Изобретение относится к оборудованию, используемому при производстве фосфорсеросодержащих удобрений, основной стадией которого является аммонизация кислот. Реактор состоит из корпуса, входящей в него реакционной трубы, патрубков ввода кислот, патрубка ввода аммиака, установленного на корпусе, и патрубка вывода продукта. При этом соотношение свободных сечений корпуса и реакционной трубы составляет 1:1÷0,5. Реакционная труба выполнена разъемной с телескопическим соединением частей, крепящихся на фланцах, установленных в торцах корпуса, причем толщина стенок реакционной трубы в 8-10 раз меньше толщины стенок корпуса. В зоне патрубка ввода кислот на стенке реакционной трубы расположены сопла для прохода аммиака в реакционную трубу. Диаметр патрубка выхода продукта составляет 0,5-0,8 диаметра реакционной трубы. Изобретение обеспечивает упрощение конструкции и уменьшение металлоемкости реактора, а также улучшение условий его эксплуатации. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 533 713 C1

1. Реактор для аммонизации кислот, состоящий из корпуса, входящей в него реакционной трубы, патрубков ввода кислот, патрубка ввода аммиака, установленного на корпусе, и патрубка вывода продукта, отличающийся тем, что соотношение свободных сечений корпуса и реакционной трубы составляет 1:1÷0,5, реакционная труба выполнена разъемной с телескопическим соединением частей, крепящихся на фланцах, установленных в торцах корпуса, причем толщина стенок реакционной трубы в 8-10 раз меньше толщины стенок корпуса, в зоне патрубка ввода кислот на стенке реакционной трубы расположены сопла для прохода аммиака в реакционную трубу, а диаметр патрубка выхода продукта составляет 0,5-0,8 диаметра реакционной трубы.

2. Реактор по п.1, отличающийся тем, что сечение зазора соединения частей реакционной трубы в 10-15 раз меньше сечения сопел.

3. Реактор по п.1, отличающийся тем, что длина части реакционной трубы с соплами составляет 1,5-2 длины части патрубка ввода кислот, входящей внутрь реакционной трубы.

Документы, цитированные в отчете о поиске Патент 2014 года RU2533713C1

ТРУБЧАТЫЙ РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ ПУЛЬПЫ ФОСФАТОВ АММОНИЯ 2008
  • Гришаев Игорь Григорьевич
  • Норов Андрей Михайлович
  • Голоус Владимир Иванович
  • Никитин Николай Ильич
RU2360729C1
US 3954942 A, 04.05.1976
Аппарат для получения сложных удобрений 1982
  • Гришаев Игорь Григорьевич
  • Жданов Юрий Федорович
  • Назирова Лейла Замановна
  • Свирина Татьяна Петровна
  • Быковская Валентина Григорьевна
  • Стрельченок Владимир Степанович
  • Усов Геннадий Андреевич
  • Артюшкевич Иван Петрович
  • Первинкин Валерий Евгеньевич
  • Антохов Иван Игнатьевич
SU1084054A1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ РАСТВОРОВ АММОНИЙФОСФАТОВ 1991
  • Коняхина Л.В.
  • Целищев Г.К.
  • Мошкова В.Г.
  • Лембриков В.М.
  • Голынко З.С.
  • Корнева З.Н.
  • Малахова Н.Н.
RU2022919C1

RU 2 533 713 C1

Авторы

Гришаев Игорь Григорьевич

Даты

2014-11-20Публикация

2013-04-02Подача