СПОСОБ СКОРОСТНОЙ ДЕСТРУКЦИИ ОСТАТОЧНЫХ НЕФТЯНЫХ ПРОДУКТОВ Российский патент 2014 года по МПК C10G15/08 C10G25/00 C10C3/00 

Описание патента на изобретение RU2535211C2

Изобретение относится к области нефтяной, нефтехимической, газовой, химической промышленности и более конкретно к способам переработки высокомолекулярного углеродсодержащего сырья, в том числе, нефтяного пека и деасфальтизата в более легкие соединения с использованием сверхвысокочастотного электромагнитного излучения.

Высокомолекулярные остатки нефтепереработки находят применение в качестве сырья для битуминозных материалов, использующихся в строительстве для дорожных покрытий. Однако для более квалифицированного их использования требуется их химическая переработка. Кроме этого, при каталитической переработке гудрона в остатках, представляющих собой пек и деасфальтизат, содержатся переходные металлы, используемые в качестве активных компонентов. В этой связи с целью снижения энергозатрат на их регенерацию целесообразно провести их концентрирование. Одним из эффективных методов такой переработки является применение сверхвысокочастотного излучения (СВЧ-излучения) в качестве источника генерации плазмы и соответствующего разогрева зоны химического превращения сырья.

Как известно, свойства веществ по отношению к воздействию микроволнового излучения характеризуются комплексной величиной диэлектрической проницаемости 8, при этом уровень поглощения материалом СВЧ-излучения характеризуется так называемыми диэлектрическими потерями, которые оцениваются тангенсом угла диэлектрических потерь [3. Ссылка на классику: Pozar D.M. // Microwave Engineering, 2nd ed., John Wiley & Sons Canada. 1998]. Исследование свойств углеродных сорбентов (УС) показали, что они обладают высоким коэффициентом поглощения СВЧ-энергии, при этом значение их тангенса угла диэлектрических потерь на несколько порядков превышает этот показатель при облучении многих других органических субстратов [М.В. Цодиков, М.А. Передерий, М.С. Карасева, Ю.В. Максимов, И.П. Суздалев, А.А. Гурко, Н.К. Жеваго. Российские нанотехнологии, 2006, т.1, стр.153-161; Цодиков М.В., Передерий М.А., Чистяков А.В. и др. //ХТТ. 2011. №6, с.43; Hayes B.L. Microwave Synthesis: Chemistry at the Speed of Light, СЕМ Publ. Matthews, NC. 2002 12-15]. Было установлено, что в зависимости от пористой структуры и минерального состава (главным образом, присутствия магнитных частиц оксидов железа) УС проявляют разные электрофизические свойства, вследствие чего динамика образования пробойных явлений и сопутствующего разогрева материала существенно различны (Цодиков М.В., Передерий М.А., Максимов Ю.В., Гурко А.А. и др. // Наукоемкие технологии, 2006, №6-7, с.55-70]. Также было установлено, что первоначально происходит нагрев поверхности углеродного носителя в результате пробойных явлений в объеме макропор. (М.В. Цодиков, М.А. Передерий, А.В. Чистяков, Г.И. Константинов, Х.М. Кадиев, С.Н. Хаджиев. ХТТ, 2012, №2, с.55-62).

Центрами зарождения пробойных явлений являются также межфазные границы зерен. Как известно возникновению пробойных процессов предшествует поляризация химических связей соединений, расположенных в поле облучения, вплоть до их деструкции. Эффект возникновения неравновесных (неустойчивых) пробойных процессов, приводящих к зарождению плазмы на поверхности частицы углеродного сорбента а также на межфазовой границе зерен послужил основой идеи осуществления деструкции тяжелых нефтяных остатков смешением последних с углеродными сорбентами, при воздействии СВЧ-излучения.

Исходя из этих результатов представляет большой интерес и актуальность переработка высокомолекулярных соединений нефти, таких как пек и деасфальтизат с превращением их в более ценные продукты, такие как водород, ценные жидкие углеводороды и концентрат редких металлов, содержащихся в остаточных высокозольных продуктах.

Известен способ термической переработки высокомолекулярного углеродсодержащего сырья в более легкие соединения (RU №2385344, МПК C10G 9/28, C10G 15/08, C10G 11/18, опубликованный 27.03.2010), включающий воздействие сверхвысокочастотного излучения на зону химического превращения, в которую подают мелкодисперсное твердое вещество, поглощающее СВЧ излучение, при этом в зоне химического превращения сырье присутствует в виде жидкой кипящей фракции, что формирует хаотическое движение частиц мелкодисперсного твердого вещества. Парообразная фаза продуктов химического превращения проходит через жидкое высокомолекулярное углеродсодержащее сырье с последующим разделением на отдельные фракции полезных продуктов, при этом мелкодисперсное твердое вещество в зоне химического превращения разогревают переменным сверхвысокочастотным электромагнитным полем до температуры, при которой идут термические превращения субстрата, например 400-800°C.

Недостатками данного способа является то, что вся энергия СВЧ излучения тратиться на нагрев мелкодисперсных веществ до температуры протекания реакции а также фракционирование продуктов реакции.

Известен способ термической переработки углеродсодержащего сырья в топливо (US Pat.Appl. №20110036706, 17.02.2011), включающий воздействие сверхвысокочастотного излучения на углеродсодержащее сырье в реакторе, имеющем две зоны. В первой зоне происходит извлечение влаги из сырья, во второй зоне температура повышается до пределов, достаточных для его деструкции. Предварительно сырье смешивается с катализатором - наноструктурированным цеолитом.

Недостатками данного способа является его многоступенчатость и использование катализатора, необратимо теряющего активность.

Известен способ термической переработки галогенсодержащих углеводородов (US Pat. №4935114, 19.06.1990), включающий воздействие сверхвысокочастотного излучения на сорбент, представляющий собой неметаллические частицы, имеющие высокий коэффициент диэлектрических потерь с адсорбированными на нем углеводородами. В ходе облучения адсорбированные вещества нагреваются, испаряются и подвергаются терморазложению. Процесс протекает в две стадии. На первой стадии облучение проводят с частотой не ниже 915 МГц. На второй стадии мощность излучения увеличивают до 3,0 ГГц. В качестве сорбентов используют керамику, пористый углерод с нанесенными на него катализаторами CuO и Cr2O3, цеолиты, кремнезем с нанесенными на него V2O5, Pt, Pd и Rh.

Недостатками данного способа являются его многоступенчатость и использование дорогостоящих катализаторов

Наиболее близким к предложенному изобретению является способ скоростной деструкции нефтяных остатков и загрязнений, описанный в (RU 2462500 C2, 10.06.2012). В известном способе предусматривается использование в качестве твердого пористого материала, поглощающего высокочастотное электромагнитное излучение, углеродных сорбентов, обладающих тангенсом угла диэлектрических потерь выше 8 и выбранные из ряда: сорбенты из бурого угля, газового угля, костры льна или древесных отходов.

Процесс деструкции нефтяных остатков и загрязнений включает их адсорбцию в порах углеродных сорбентов и обработку сверхвысокочастотным излучением при индуцированной температуре 300-600°C не более 10 мин в потоке Ar или CO2.

Известный способ позволяет провести скоростную обработку нефтяных остатков, в частности гудрона, адсорбированного в порах углеродного сорбента, с получением водородсодержащего газа, но не дает возможности переработать нефтяной пек и деасфальтизат.

Задача предлагаемого изобретения заключается в разработке способа скоростной деструкции остаточных нефтяных продуктов, позволяющего быстро и эффективно переработать их с получением дополнительных количеств ценных продуктов.

Поставленная задача решается тем, что предложен способ скоростной деструкции остаточных нефтяных продуктов, включающий их адсорбцию в порах углеродного сорбента и обработку сверхвысокочастотным излучением при индуцированной температуре до 600°C в потоке аргона или диоксида углерода, в котором в качестве остаточных нефтяных продуктов используют пек или деасфальтизат, взятые в равных количествах с углеродным сорбентом, а обработку сверхвысокочастотным излучением проводят в течение 10-20 минут.

В качестве сорбента, поглощающего сверхвысокочастотное излучение, используют дробленый древесный уголь (ДДА) с тангенсом угла диэлектрических потерь, равным 8,8.

Сорбент представляет собой гранулы диаметром 1-3 мм, суммарный объем пор 1,6 см3/г, объем микропор 0,33 см3/г, объем макропор 1,27 см3/г, насыпная плотность 0,25 г/см3, диэлектрическая проницаемость - 2,1. Исходные пек и деасфальтизат полученны в процессе гидроконверсии тяжелых нефтяных остатков.

Способ позволяет получить дополнительные количества ценных продуктов:

1) водородсодержащего газа, в котором содержание водорода достигает до 36,43 мас.%, в случае деструкции пека, и 28,0 мас.%, в случае деструкции деасфальтизата;

2) жидких продуктов, выход которых на загруженное сырье варьируется в интервале от 25 до 42 мас.% и от 46 до 51 мас.% для пека и для деасфальтизата соответственно;

3) добиться концентрирования металлов (Ni, V, Mo), суммарное содержание которых на два порядка возрастает по сравнению с содержанием их в исходном пеке и по расчетам составляет ~3 масс.% от остатка реакционной смеси пек-сорбент.

Способ скоростной деструкции остаточных нефтяных продуктов под воздействием сверхвысокочастотного излучения проводят на установке, принципиальная схема которой представлена на Фиг.1.

Достижение технического результата - получение дополнительных количеств ценных продуктов - подтверждается диаграммами, представленными на Фиг.2 и Фиг.3. На Фиг.2 показан выход основных продуктов деструкции пека (П2) и деасфальтизата (Д1). На Фиг.2 показан выход газообразных продуктов деструкции пека (П1) и деасфальтизата (Д1), в том числе выход водорода.

На практике цели изобретения достигаются следующим образом.

Исходную смесь сорбента и остаточного нефтяного продукта (пека или деасфальтизата) готовят путем их механического смешения в количествах, обеспечивающих массовое соотношение углеродного сорбента к остаточному нефтяному продукту равным 0,5:1; 1:1 и 2:1. Оптимальные условия переработки пека и деасфальтизата, такие как быстрый выход на заданный температурный режим, достижение высоких степеней конверсии остаточного нефтяного продукта были получены при соотношении углеродного сорбента к остаточному нефтяному продукту, равном 1:1.

В случае смеси с соотношением компонентов, равным 0,5:1, заметно снижается скорость нагрева до рабочей температуры и также происходит снижение степени конверсии углеродного сорбента к остаточному нефтяному продукту и как следствие уменьшение выхода целевых продуктов.

При соотношении компонентов в смеси, равном 2:1, наблюдаются достижение тех же самых условий эксперимента, что и в случае применения смеси с соотношением, равным 1:1, что говорит о нецелесообразности применения такой смеси ввиду нерационального использования избытка углеродного сорбента.

Готовую смесь загружают в реактор 4, после чего реактор погружают в волновод 2 на слое поглощающей керамики 3 по направлению движения электромагнитных волн, генерируемых магнетроном 1. Электромагнитные волны поглощаются камерой поглощения СВЧ-излучения 6. С момента начала экспозиции через смесь субстрата и адсорбента продувают аргоном или диоксидом углерода со скоростью 20 мл/мин. При достижении 550-600°C (рабочий режим) начинается отбор продуктов разложения, продолжавшийся до окончания опыта.

Продувочный газ после реактора проходит через микросепаратор, охлаждаемый до температуры 50-70°C (охлаждаемый сепаратор 7), поступает в приемную емкость, из которой его подают на анализ в газовый хроматограф 8. После окончания опыта и охлаждения системы смесь выгружают и анализируют на остаточное количество содержащегося в нем остаточного нефтяного продукта. В качестве источника сверхвысокочастотного излучения используют магнетрон М-140 (частота генерации 2.45±0.05 ГГц), питание осуществляют от сети переменного тока с напряжением 220 В (50 Гц), напряжение регулируют с помощью ЛАТР'а. Приготовленную смесь помещают в кварцевый проточный реактор, установленный в рабочую камеру установки сверхвысокочастотного излучения, снабженную вольфрам-рениевой термопарой 5, помещенной в металлический кожух, экранирующий микроволновое излучение.

Корректность показаний динамики изменения температуры при сверхвысокочастотном излучении оценивают по эталону, в качестве которого используют гамма-оксид алюминия, полученные показания сравнивают с литературными данными по температуре, измеренной при помощи дистанционного ИК-термометра.

Анализ газовой пробы осуществляют методом газожидкостной хроматографии - ГЖХ на хроматографе "Кристалл" с использованием пламенно-ионизационного детектора (для определения углеводородов) и катарометра (для определения кислородсодержащих компонентов).

Анализ жидких фракций, образующихся в результате воздействия сверхвысокочастотного излучения, исследуют методом хромато-масс-спектрометрии.

Элементный анализ твердого остатка, полученный после СВЧ-воздействия на смесь пек + УС, проводят методом лазерной масс-спектрометрии на приборе ЭМАЛ-2. Источником лазерного излучения является лазер ИЗ-25 с активным элементом из оксида иттрия, легированного неодимом. Диаметр лазерного факела 20-50 мкм.

Правильность определения содержания микропримесей составляет 30%. Чувствительность прибора: 10-4-10-5 ат %. Измерение плотности почернения и расчет элементного состава выполнялся на денситометре МД-100, соединенном с ПЭВМ.

Спектры ПМР получены на спектрометре MSL-300 «Bruker» с рабочей частотой 300 МГц и Фурье-преобразованием при температуре 24°C, количество накоплений 12, 90° импульс 3 мкс. Образцы для исследования готовят в виде растворов в CCl4 с добавлением CDCl3. Химические сдвиги считают от сигнала остаточных протонов хлороформа 7,25 м.д.

Регистрацию ИК-спектров проводят в режиме пропускания на Фурье спектрометре IFS-66 v/s Bruker в области 400-4000 см-1 (50 сканов, разрешение 1-2 см-1). Спектр маслообразного продукта регистрируется в виде монослоя вещества, раздавленного между двумя пластинками KBr, а для твердого образца готовят раствор в CCl4, из которого отлита пленка на стекло из КВт, спектр полученной пленки зарегистрирован в режиме пропускания.

Нижеследующие примеры иллюстрируют предлагаемое изобретение, но никоим образом не ограничивают область его применения.

Пример 1.

Фракцию углеродного сорбента ДДА 1-3 мм в количестве 3,6 г смешивают с пеком фракции 0,3-0,5 мм в количестве 3,6 г. Перед загрузкой оба компонента тщательно перемешивают друг с другом и помещают в реактор. Подготовленную смесь обрабатывают сверхвысокочастотным излучением при температуре 550-600°C и времени экспозиции 15 мин в среде аргона. Время выхода на режим - 5 мин. Входная мощность - Wвх, измеренная на выходе из магнитрона в стационарном режиме - 3,0 мВт выходная мощность, измеренная после реактора - Wвых в стационарном режиме 2,6 мВт, при силе тока I, равной 100 µА.

После окончания эксперимента анализируют образующийся газ, жидкий продукт и концентрат металлов в реакционном остатке, как описано выше, и рассчитывают глубину переработки пека.

Пример 2.

Опыт проводят по примеру 1 с той разницей, что обработку смеси проводят при времени экспозиции 10 мин в среде диоксида углерода.

Пример 3.

Опыт проводят по примеру 1 с той разницей, что обработку смеси проводят при времени экспозиции 20 мин.

Пример 4.

Фракцию углеродного сорбента ДДА 1-3 мм в количестве 4,7 г смешивают с деасфальтизатом фракции 0,3-0,5 мм в количестве 4,7 г. Перед загрузкой оба компонента тщательно перемешивают друг с другом и подают в реактор. Подготовленную смесь обрабатывают сверхвысокочастотным излучением при температуре 550-600°С и времени экспозиции 15 мин в среде аргона. Время выхода на режим - 4 мин. Входная мощность - Wвх, измеренная на выходе из магнитрона в стационарном режиме - 3,6 мВт; выходная мощность измеренная после реактора - Wвых в стационарном режиме 3,0 мВт, при силе тока I, равной 100 µА.

После окончания эксперимента анализируют образующийся газ и жидкий продукт, как описано выше, и рассчитывают глубину переработки деасфальтизата.

Пример 5.

Опыт проводят по примеру 4 с той разницей, что обработку смеси проводят при времени экспозиции 10 мин в среде диоксида углерода.

Пример 6.

Опыт проводят по примеру 4 с той разницей, что обработку смеси проводят при времени экспозиции 20 мин.

Результаты скоростной деструкции остаточных нефтяных продуктов под воздействием сверхвысокочастотного излучения, а также состав полученного газа и элементный состав получаемых жидких продуктов представлены в таблицах 1-3.

Таблица 1. Результаты скоростной деструкции остаточных нефтяных продуктов под воздействием сверхвысокочастотного излучения при температуре 550-600°C. № примера Загружено, г Выход получаемых продуктов, г Выход, мас.% на загруженное сырье Конверсия, % газ Жидкий продукт Твердый остаток газ Жидкий продукт 1 3,6 0,4 0,9 2,3 11,1 25,0 36,1 2 3,6 0,6 1,4 1,6 16,7 39,0 55,5 3 3,6 0,6 1,5 1,5 16,7 41,6 58,3 4 4,7 0,5 2,2 2,0 11,0 46,8 58,0 5 4,7 0,7 2,3 1,7 14,9 48,9 63,8 6 4,7 0,7 2,4 1,6 14,9 51,0 65,9

Таблица 2. Состав полученного газа Компоненты C1 C2 C2= C3 C3= C4 C4= C5 CO CO2 H2 П1 39,96 8,59 4,93 2,38 2,62 0,85 1,72 1,3 0,47 0,75 36,43 Д1 38,64 11,00 7,02 3,32 4,05 1,24 2,86 0,84 0,77 2,26 28,0

Таблица 3. Состав жидкого продукта, полученного в результате деструкции пека под воздействием СВЧ-излучения (Ar, T=600 C, ДДА-сорбент) N/N Соединение мас.% N/N Соединение мас.% 1 Изобутены 1,3 10 Гептан 3,9 2 Бутены 0,9 11 Октан 4,5 3 Изопентан 0,8 12 Этилбензол 8,0 4 Пентен-2 4,0 13 о-Ксилол 12,3 5 Пентен-1 0,7 14 м-Ксилол 8,5 6 Пентан 2,0 15 Изопропилбензол 3,1 7 Диметилпентан 1,1 16 Пропилбензол 3,4 8 Гексан 3,4 17 о-Метилэтилбензол 1,1 9 Бензол 15,0 18 1,2,3-триметилбензол 4,3 - 19 триметилбензол 2,4 Всего 81,5 Неидентифицированные 18,5

Как видно из приведенных данных, деструкция деасфальтизата протекает по той же схеме что и деструкция пека. Разница заключается в том, что при деструкции деасфальтизата в образующемся газе несколько снижается содержание водорода, зато увеличивается выход жидких продуктов. Конверсия нефтяного пека в условиях эксперимента (таблица 1) составляет 50-60%, деасфальтизата - 60-65%. Также следует отметить, что при проведении процесса деструкции пека и деасфальтизата выделяются жидкие продуты, выход на загруженное сырье которых (таблица 2) варьируется в интервале от 25 до 42 мас.% для пека и от 46 до 51 мас.% для деасфальтизата соответственно. Как видно из данных табл. 3 по своему составу жидкие продукты переработки пека представляют в основном смесь ароматических углеводородов.

Предложенный способ позволяет достигнуть концентрировании металлов (Ni, V, Mo) в результате деструкции. Так, в таблице 4 приведены данные по содержанию металлов в исходном сырье и в остатке деструкции на примере пека.

Таблица 4. Содержание металлов в исходном пеке и остатке Количество металлов V Ni Mo S в исходном пеке г мас.% г мас.% г мас.% г мас.% 0,00680 0,056 0,00303 0,025 0,00182 0,015 0,012 0,096 в золе, полученной сжиганием остаточной смеси пека и сорбента после СВЧ-излучения* 0,09476 4,7229 0,05624 2,8031 0,03735 0,5855 0,19 8,485 * - сверхвысокочастотное излучение

Как видно из данных таблицы 4, в процессе деструкции пека происходит концентрирование металлов (Ni, V, Mo), суммарное содержание которых по массе на два порядка возрастает по сравнению с содержанием их в исходном пеке. Результаты количественного анализа исходного сорбента ДДА показали отсутствие Ni, V и Mo металлов в образце, что подтверждает предположение о накоплении металлов из самого пека.

Похожие патенты RU2535211C2

название год авторы номер документа
СПОСОБ СКОРОСТНОЙ ДЕСТРУКЦИИ НЕФТЯНЫХ ОСТАТКОВ И ЗАГРЯЗНЕНИЙ 2010
  • Цодиков Марк Вениаминович
  • Хаджиев Саламбек Наибович
  • Передерий Маргарита Алексеевна
  • Кадиев Хусаин Магамедович
  • Чистяков Андрей Валерьевич
  • Мартынов Борис Иванович
  • Константинов Григорий Игоревич
  • Марин Владимир Петрович
RU2462500C2
Способ выделения концентрата ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки 2016
  • Лебедев Юрий Анатольевич
  • Хаджиев Саламбек Наибович
  • Кадиев Хусаин Магамедович
  • Аверин Константин Андреевич
  • Висалиев Мурат Яхьяевич
  • Мокочунина Татьяна Владимировна
RU2631427C1
СПОСОБ СКОРОСТНОЙ ПЕРЕРАБОТКИ ГУДРОНА 2021
  • Цодиков Марк Вениаминович
  • Чистяков Андрей Валерьевич
  • Константинов Григорий Игоревич
  • Борисов Роман Сергеевич
  • Пасевин Вячеслав Иванович
  • Гехман Александр Ефимович
RU2768167C1
СПОСОБ ДЕСТРУКЦИИ ТОКСИЧНЫХ СОЕДИНЕНИЙ 2010
  • Цодиков Марк Вениаминович
  • Передерий Маргарита Алексеевна
  • Бухтенко Ольга Владимировна
  • Жданова Татьяна Николаевна
  • Чистяков Андрей Валерьевич
  • Быков Виктор Иванович
  • Мартынов Борис Иванович
  • Залепугин Дмитрий Юрьевич
  • Марин Владимир Петрович
RU2428630C1
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОМОЛЕКУЛЯРНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ В БОЛЕЕ ЛЕГКИЕ УГЛЕВОДОРОДЫ 2008
  • Пармон Валентин Николаевич
  • Танашев Юрий Юрьевич
  • Удалов Евгений Игоревич
  • Болотов Василий Александрович
  • Черноусов Юрий Дмитриевич
RU2381256C1
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ВЫСОКОМОЛЕКУЛЯРНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ В БОЛЕЕ ЛЕГКИЕ СОЕДИНЕНИЯ 2008
  • Пармон Валентин Николаевич
  • Танашев Юрий Юрьевич
  • Удалов Евгений Игоревич
  • Болотов Василий Александрович
  • Боброва Людмила Николаевна
  • Черноусов Юрий Дмитриевич
RU2385344C1
СПОСОБ ПЕРЕРАБОТКИ ТЯЖЕЛОГО УГЛЕВОДОРОДНОГО СЫРЬЯ 2009
  • Курочкин Андрей Владиславович
  • Набиулин Галей Нигаматулович
RU2413752C2
СПОСОБ ПЕРЕРАБОТКИ УГЛЕВОДОРОДСОДЕРЖАЩИХ ШЛАМОВ В ОТКРЫТЫХ ХРАНИЛИЩАХ С ИСПОЛЬЗОВАНИЕМ СВЧ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ 2014
  • Бахонин Алексей Васильевич
  • Бахонина Елена Игоревна
  • Бикбулатов Игорь Хуснутович
  • Имашев Урал Булатович
  • Шулаев Николай Сергеевич
RU2572205C1
Способ переработки тяжёлых нефтяных остатков, резинотехнических и многокомпонентных полимерных отходов 2021
  • Нигматуллин Виль Ришатович
  • Нигматуллин Ильшат Ришатович
  • Нигматуллин Дамир Ильшатович
  • Нигматуллин Расул Вильевич
  • Нигматуллин Ришат Гаязович
RU2798461C2
СПОСОБ ПОЛУЧЕНИЯ НЕФТЯНОГО СЫРЬЯ ДЛЯ ПРОИЗВОДСТВА УГЛЕРОДНЫХ МАТЕРИАЛОВ 1996
  • Сурков В.А.
  • Гольдштейн Ю.М.
  • Фомин В.Ф.
  • Пилипенко И.Б.
  • Савидов В.Г.
  • Ходырев А.А.
  • Андреев В.С.
  • Воронин В.А.
  • Слепокуров И.И.
RU2124549C1

Иллюстрации к изобретению RU 2 535 211 C2

Реферат патента 2014 года СПОСОБ СКОРОСТНОЙ ДЕСТРУКЦИИ ОСТАТОЧНЫХ НЕФТЯНЫХ ПРОДУКТОВ

Изобретение относится к способу скоростной деструкции остаточных нефтяных продуктов. Способ включает адсорбцию остаточных нефтяных продуктов в порах углеродного сорбента и обработку сверхвысокочастотным излучением при индуцированной температуре до 600°C в потоке аргона или диоксида углерода. При этом в качестве остаточных нефтяных продуктов используют пек или деасфальтизат, взятые в равных количествах с углеродным сорбентом, а обработку сверхвысокочастотным излучением проводят в течение 10-20 минут. Как правило, в качестве углеродного сорбента используют дробленый древесный уголь с тангенсом угла диэлектрических потерь, равном 8,8. Предлагаемое изобретение позволяет простым способом получить водород, дополнительное количество ценных жидких углеводородов и концентрата редких металлов. 1 з.п. ф-лы, 3 ил., 4 табл., 6 пр.

Формула изобретения RU 2 535 211 C2

1. Способ скоростной деструкции остаточных нефтяных продуктов, включающий их адсорбцию в порах углеродного сорбента и обработку сверхвысокочастотным излучением при индуцированной температуре до 600°C в потоке аргона или диоксида углерода, отличающийся тем, что в качестве остаточных нефтяных продуктов используют пек или деасфальтизат, взятые в равных количествах с углеродным сорбентом, а обработку сверхвысокочастотным излучением проводят в течение 10-20 минут.

2. Способ скоростной деструкции остаточных нефтяных продуктов по п.1, отличающийся тем, что в качестве углеродного сорбента используют дробленый древесный уголь с тангенсом угла диэлектрических потерь, равным 8,8.

Документы, цитированные в отчете о поиске Патент 2014 года RU2535211C2

СПОСОБ СКОРОСТНОЙ ДЕСТРУКЦИИ НЕФТЯНЫХ ОСТАТКОВ И ЗАГРЯЗНЕНИЙ 2010
  • Цодиков Марк Вениаминович
  • Хаджиев Саламбек Наибович
  • Передерий Маргарита Алексеевна
  • Кадиев Хусаин Магамедович
  • Чистяков Андрей Валерьевич
  • Мартынов Борис Иванович
  • Константинов Григорий Игоревич
  • Марин Владимир Петрович
RU2462500C2
СПОСОБ ПЕРЕРАБОТКИ ВЫСОКОМОЛЕКУЛЯРНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ В БОЛЕЕ ЛЕГКИЕ УГЛЕВОДОРОДЫ 2008
  • Пармон Валентин Николаевич
  • Танашев Юрий Юрьевич
  • Удалов Евгений Игоревич
  • Болотов Василий Александрович
  • Черноусов Юрий Дмитриевич
RU2381256C1
ГОРЕЛКА С УСОВЕРШЕНСТВОВАННОЙ КРЫШКОЙ 2018
  • Мезль, Клаус
  • Смигиль, Бьёрн
  • Ляйнсле, Пауль
  • Делл, Виталий
  • Пфау, Маттиас
  • Говицке, Маркус
RU2721744C1
US 4935114A1, 19.06.1990
Способ получения коксующегося материала из каменноугольного пека 1979
  • Гвоздарев Владимир Григорьевич
  • Федосеев Сергей Дмитриевич
  • Голубев Борис Семенович
SU903375A1

RU 2 535 211 C2

Авторы

Цодиков Марк Вениаминович

Чистяков Андрей Валерьевич

Курдюмов Сергей Сергеевич

Константинов Григорий Игоревич

Передерий Маргарита Алексеевна

Хаджиев Саламбек Наибович

Кадиев Хусаин Магамедович

Даты

2014-12-10Публикация

2013-02-21Подача