СПОСОБ ИЗМЕРЕНИЯ ОБРАЗУЮЩЕЙ КОМЛЯ ДЕРЕВА Российский патент 2014 года по МПК A01G23/00 

Описание патента на изобретение RU2535751C2

Изобретение относится к дендрометрии и может быть использовано в индикации природной среды, в частности по комлевой части растущих в различных экологических условиях произрастания деревьев. Изобретение также может быть использовано при разработке мер по улучшению качества лесных и нелесных древостоев с учетом закономерностей формы ствола учетных деревьев по диаметру в зависимости от высоты и азимута его измерения.

Известен способ измерения диаметра ствола дерева (см. книгу: Тюрин А.В. Таксация леса: Учебник для вузов. М.: Гослесбумиздат, 1945. 376 с. С. 210, 5-6 строка сверху), включающее измерение диаметра на высоте груди по двум взаимно перпендикулярным направлениям.

Недостатком является усреднение по двум измеренным значениям и расчет среднего диаметра на высоте груди, что не дает возможности определить форму поперечного сечения ствола дерева.

Известен также способ анализа комлевой части растущего дерева по патенту №2254707, включающее измерение вдоль ствола гибкой мерной лентой.

Недостатком является принятие кратной длины вдоль ствола через 0,5 м, причем измерения выполняют от корневой шейки вверх по стволу. Это не позволяет измерять комлевую часть ниже корневой шейки. При этом измерения по длине выполняют выше стандартной высоты 1,3 м, то есть за пределами комлевой части растущего дерева.

Технический результат - повышение точности измеренных значений диаметра ствола на разных высотах от поверхности почвы до стандартной высоты 1,3 м при одном и том же значении азимута направления измерения диаметра, а также повышение функциональных возможностей анализа комля ствола по выявленным закономерностям образующих по разным направлениям азимута.

Этот технический результат достигается тем, что способ измерения образующей комля дерева, характеризующийся тем, что осуществляют измерение диаметра на высоте 1,3 м от уровня почвы по двум взаимно перпендикулярным направлениям север-юг и восток-запад для изучения влияния сторон света, при этом дополнительные измерения диаметра выполняют по заданным направлениям азимута на разных высотах от поверхности почвы, при этом каждое направление азимута принимают за отдельную образующую линию комля дерева, затем по измеренным значениям диаметра выполняют статистическое моделирование для выявления закономерности изменения каждой образующей линии комля, а по параметрам выявленных закономерностей проводят анализ параметров комля учетного дерева для сопоставления с объектами вокруг места произрастания, влияющими на развитие и рост учетного дерева.

Диаметры по разным азимутам измеряют по крайней мере в четырех поперечных сечениях комля: на уровне высоты 1,3 м от поверхности почвы; между первым уровнем и корневой шейкой ствола дерева; на уровне корневой шейки ствола дерева и ниже уровня корневой шейки, но не доходя поверхности почвы при сохранении формы комля без перехода на корни первого порядка.

Дополнительно в каждом уровне высоты для сопоставления измеряют периметр поперечного сечения комля учетного дерева.

По измеренным в каждом азимутальном направлении диаметрам комля отдельно проводят анализ образующей с вычислением коэффициентов закомелистости и дополнительно по выявленным закономерностям формы образующей линии определяют также теоретический диаметр на уровне поверхности почвы.

Математическую закономерность каждой боковой линии образующей комля по заданному азимуту выявляют по общей формуле:

,

где Dh - переменный диаметр поперечного сечения комля в данном месте измерения на разных высотах от поверхности почвы, см;

D1 - диаметр утолщения комля на нулевой высоте по сравнению с высотой 1,3 м от поверхности почвы, см;

D0 - расчетный диаметр ствола на высоте 1,3 м от поверхности почвы по формуле, см;

h - высота от поверхности почвы не менее в четырех поперечных сечениях комля учетного дерева, при этом некий размер на поверхности почвы получает значение высоты h=0;

a1, a2 - параметры статистической модели, зависящие от формы

боковой линии образующей поверхности комля ствола в заданном направлении азимута, причем:

a1 - активность спада, то есть относительного сбега от крайних корней первого порядка до корневой шейки и дальше на стволе дерева до высоты 1,3 м, переменного диаметра поперечного сечения комля учетного дерева по боковой линии в заданном направлении азимута;

a2 - интенсивность спада образующей ствола дерева от начала корней до высоты 1,3 м от поверхности почвы.

Каждая форма образующей линия, после проведения измерений и моделирования по ним с выявлением значений параметров устойчивых биотехнических закономерностей по общему закону образующей линии, сопоставляется с окружающими учетное дерево природными и антропогенными объектами.

Сущность технического решения заключается в том, что диаметры по разным азимутам измеряют по крайней мере в четырех поперечных сечениях комля: 1) на уровне высоты 1,3 м от поверхности почвы; 2) между первым уровнем и корневой шейкой ствола дерева; 3) на уровне корневой шейки ствола дерева; 4) ниже уровня корневой шейки, но не доходя поверхности почвы при сохранении формы комля без перехода на корни первого порядка.

Сущность технического решения заключается также в том, что по измеренным в каждом азимутальном направлении диаметрам комля отдельно проводят анализ образующей с вычислением коэффициентов закомелистости по указанным четырем поперечным сечениям и дополнительно по выявленным закономерностям формы образующей линии определяют также теоретический диаметр на уровне поверхности почвы.

Сущность технического решения заключается также и в том, что дополнительно в каждом уровне высоты для сопоставления измеряют периметр поперечного сечения комля учетного дерева.

Положительный эффект достигается тем, что каждая образующая линия, после проведения измерений и моделирования по ним с выявлением значений параметров устойчивых биотехнических закономерностей по общему закону образующей линии, форма образующей линии сопоставляется с окружающими учетное дерево природными и антропогенными объектами. Новизна заключается в том, что впервые получен фундаментальный экспоненциальный закон изменения формы образующей линии по различным азимутам измерения диаметра.

Предлагаемое техническое решение обладает существенными признаками, новизной и значительным положительным эффектом. Материалов, порочащих новизну технического решения, нами не обнаружено. На фиг. 1 показана схема измерения диаметра поперечного сечения ствола по азимутам на четырех высотах; на фиг. 2 - показано фото измерения ствола березы на высоте 0,21 м от поверхности почвы; на фиг. 3 показан пространственный график, при развертке в прямоугольной системе координат, изменения диаметра ствола в зависимости от высоты от поверхности почвы и азимута направления диаметра; на фиг. 4 - график боковой образующей комля березы повислой в северном направлении при азимуте φ=0. Способ содержит такие действия.

Измерения диаметра выполняют по заданным направлениям азимута на разных высотах от поверхности почвы. При этом каждое направление азимута принимается за отдельную образующую линию комля дерева. Затем по измеренным значениям диаметра выполняют статистическое моделирование для выявления закономерности изменения каждой образующей линии комля. А по параметрам выявленных закономерностей проводят анализ параметров комля учетного дерева и сопоставляют с объектами вокруг места произрастания, влияющими на развитие и рост учетного дерева.

Диаметры по разным азимутам измеряют по крайней мере в четырех поперечных сечениях комля: на уровне высоты 1,3 м от поверхности почвы; между первым уровнем и корневой шейкой ствола дерева; на уровне корневой шейки ствола дерева и ниже уровня корневой шейки, но не доходя поверхности почвы при сохранении формы комля без перехода на корни первого порядка.

Дополнительно в каждом уровне высоты для сопоставления измеряют периметр поперечного сечения комля учетного дерева.

По измеренным в каждом азимутальном направлении диаметрам комля отдельно проводят анализ образующей с вычислением коэффициентов закомелистости и дополнительно по выявленным закономерностям формы образующей линии определяют также теоретический диаметр на уровне поверхности почвы.

Математическую закономерность каждой боковой линии образующей комля по заданному азимуту выявляют по общей формуле:

,

где Dh - переменный диаметр поперечного сечения комля в данном месте измерения на разных высотах от поверхности почвы, см;

D1 - диаметр утолщения комля на нулевой высоте по сравнению с высотой 1,3 м от поверхности почвы, см;

D0 - расчетный диаметр ствола на высоте 1,3 м от поверхности почвы по модели (1), см;

h - высота от поверхности почвы не менее в четырех поперечных сечениях комля учетного дерева, при этом некий размер на поверхности почвы получает значение высоты h=0;

а1, а2 - параметры статистической модели, зависящие от формы боковой линии образующей поверхности комля ствола в заданном направлении азимута, причем:

а1 - активность спада, то есть относительного сбега от крайних корней первого порядка до корневой шейки и дальше на стволе дерева до высоты 1,3 м, переменного диаметра поперечного сечения комля учетного дерева по боковой линии в заданном направлении азимута;

а2 - интенсивность спада образующей ствола дерева от начала корней до высоты 1,3 м от поверхности почвы.

Каждая образующая линия, после проведения измерений и моделирования по ним с выявлением значений параметров устойчивых биотехнических закономерностей по общему закону образующей линии, форма образующей линии сопоставляется с окружающими учетное дерево природными и антропогенными объектами.

Способ измерения образующей комля дерева, например через 30° от северной стороны, на четырех высотах от уровня поверхности почвы, выполняется следующими действиями.

Вначале выбирают учетное дерево и измеряют его общие параметры.

Затем гибкой мерной лентой, которая имеет, как правило, длину 1,5 м и применяется в швейном деле, определяют уровень высоты 1,3 м от поверхности почвы. От старого способа исчисления по прототипу давно отказались, так как акселерация по сравнению с столетней давностью дала повышение роста людей и поэтому высота груди стала неприемлемой. Поэтому отмеряют разные высоты от поверхности почвы до уровня 1,3 м от поверхности почвы и ставят, например карандашом или иным способом, на коре учетного дерева метки этих уровней высоты.

Следующий цикл измерения диаметра повторяют на другом азимуте, например, через 30° в последовательности 0, 30, 60, 90 и т.д.

Измерения диаметра выполняют по заданным направлениям азимута на разных высотах от поверхности почвы. При этом каждое направление азимута принимается за отдельную образующую линию комля дерева. Затем по измеренным значениям диаметра выполняют статистическое моделирование для выявления закономерности изменения каждой образующей линии комля. А по параметрам выявленных закономерностей проводят анализ параметров комля учетного дерева и сопоставляют с объектами вокруг места произрастания, влияющими на развитие и рост учетного дерева.

Диаметры по разным азимутам измеряют, по крайней мере, в четырех поперечных сечениях комля: на уровне высоты 1,3 м от поверхности почвы; между первым уровнем и корневой шейкой ствола дерева; на уровне корневой шейки ствола дерева и ниже уровня корневой шейки, но не доходя поверхности почвы при сохранении формы комля без перехода на корни первого порядка.

Дополнительно в каждом уровне высоты для сопоставления измеряют периметр поперечного сечения комля учетного дерева.

По измеренным в каждом азимутальном направлении диаметрам комля отдельно проводят анализ образующей с вычислением коэффициентов закомелистости и дополнительно по выявленным закономерностям формы образующей линии определяют также теоретический диаметр на уровне поверхности почвы.

Математическую закономерность каждой боковой линии образующей комля по заданному азимуту выявляют по общей формуле:

,

где Dh - переменный диаметр поперечного сечения комля в данном месте измерения на разных высотах от поверхности почвы, см;

D1 - диаметр утолщения комля на нулевой высоте по сравнению с высотой 1,3 м от поверхности почвы, см;

D0 - расчетный диаметр ствола на высоте 1,3 м от поверхности почвы по модели (1), см;

h - высота от поверхности почвы не менее в четырех поперечных сечениях комля учетного дерева, при этом некий размер на поверхности почвы получает значение высоты h=0;

а1, а2 - параметры статистической модели, зависящие от формы боковой линии образующей поверхности комля ствола в заданном направлении азимута, причем:

а1 - активность спада, то есть относительного сбега от крайних корней первого порядка до корневой шейки и дальше на стволе дерева до высоты 1,3 м переменного диаметра поперечного сечения комля учетного дерева по боковой линии в заданном направлении азимута;

а2 - интенсивность спада образующей ствола дерева от начала корней до высоты 1,3 м от поверхности почвы.

Каждая образующая линия, после проведения измерений и моделирования по ним с выявлением значений параметров устойчивых биотехнических закономерностей по общему закону образующей линии, форма образующей линии сопоставляется с окружающими учетное дерево природными и антропогенными объектами.

После этого переходят к другому учетному дереву.

Пример. Город Йошкар-Ола - один из самых зеленых городов России. Общая площадь всех зеленых массивов и насаждений города составляет 1441 га. Уровень обеспеченности населения города зелеными насаждениями всех категорий является одним из самых высоких по России. Обеспеченность зелеными насаждениями общего пользования составляет 9,3 м2/чел.

В качестве объекта исследования было взята береза повислая. Состояние дерева оценивается как здоровое, при этом заметных признаков угнетения роста не замечено. Диаметр кроны дерева составляет 8 м.

Результаты измерений и расчетов приведены в таблице 1.

Категория санитарного состояния березы равна 1. Измерения проводили по азимуту через 30°.

Средний арифметический диаметр D ¯ вычислялся по формуле:

По измерениям гибкой мерной лентой периметра P вычислялся расчетный диаметр D ˜ по выражению

Среднестатистическое значение D диаметра определяется как первый член выявленной биотехнической закономерности. При этом ошибка 100 ( D ¯ D ) / D ¯ равна для четырех сечений ствола, соответственно: -0,28; 0,23; 0,09 и 0,37%. А вычисление диаметра через периметр дает гораздо большую погрешность: 3,92; 3,08; 3,36 и 1,44%.

Таким образом, измерения диаметра по ориентации его направления по компасу дает высокоточные результаты по значениям. При этом 12 измерений на современном уровне развития приборов достаточное количество.

В измерениях применялись:

- гибкая мерная лента для измерения высоты и периметра в разных поперечных сечениях комлевой части дерева;

- мерная вилка для измерений диаметров ствола с ценой деления 1 мм (погрешность измерений ±0,5 мм);

- компас жидкостный спортивный типа II-3 с ценой деления круговой шкалы 2° или погрешностью измерений ±1°.

Коэффициент закомелистости рассчитывается как отношения диаметров на минимальной высоте от поверхности почвы к максимальной высоте в 1,3 м. Он известен из научно-технической литературы.

Для выявления закономерностей типа D=f(h) таблицу 1 необходимо транспонировать, и результаты приведены в таблице 2.

Из данных таблицы 1 заметно, что вариация значений диаметра превышает 17%, что недопустимо много для целей экологической индикации качества территории свойствами растущих деревьев.

Поэтому для повышения точности анализа образующих комля по различным азимутам, необходимо проведение моделирования в зависимости от высоты измерений. Тогда получается столько однотипных по конструкции формул с конкретными параметрами, сколько будет принято направлений азимута. Для удобства измерений принимают равномерную шкалу азимута.

По принципу «от простого к сложному» можно предложить (табл.3) «кирпичики» для построения, по ходу структурно-параметрической идентификации биотехнического закона, любой статистической модели.

В таблице 3 показаны все «нормальные» фрагменты, у которых впереди могут быть расположены оперативные константы, в виде знаков «+» или «-». Все шесть устойчивых законов распределения являются частными случаями биотехнического закона, показанного внизу таблицы 3.

При моделировании биотехнические закономерности типа D=f(h) можно идентифицировать устойчивыми законами и закономерностями в двух режимах статистической обработки данных таблицы 2:

1) выявлять только детерминированные закономерности;

2) дополнить детерминированные закономерности волновыми колебательными возмущениями диаметра по его азимуту.

Из-за того, что на учетном дереве образующие боковой поверхности ствола дерева рассматриваются только на коротком интервале высоты, то принимается только первое направление, то есть статистическое моделирование выполняется для выявления только детерминированных биотехнических закономерностей.

Математическую закономерность каждой боковой линии комля по заданному азимуту выявляют по единой общей формуле

где Dh - переменный диаметр поперечного сечения комля в данном месте измерения на разных высотах от поверхности почвы, см;

D1 - диаметр утолщения комля на нулевой высоте по сравнению с высотой 1,3 м от поверхности почвы, см;

D0 - расчетный диаметр ствола на высоте 1,3 м от поверхности почвы по модели (1), см;

h - высота от поверхности почвы не менее в четырех поперечных сечениях комля учетного дерева, при этом некий размер на поверхности почвы получает значение высоты h=0;

a1, a2 - параметры статистической модели, зависящие от формы боковой линии образующей поверхности комля ствола в заданном направлении азимута, причем:

a1 - активность спада, то есть относительного сбега от крайних корней первого порядка до корневой шейки и дальше на стволе дерева до высоты 1,3 м, переменного диаметра поперечного сечения комля учетного дерева по боковой линии в заданном направлении азимута;

a2 - интенсивность спада образующей ствола дерева от начала корней до высоты 1,3 м от поверхности почвы.

В таблице 4 даны результаты идентификации модели (1).

Расчетный коэффициент закомелистости комля учетной березы определяется по азимуту из математического выражения

Из таблицы 3 видно, что адекватность модели (1) боковой линии нейлоидной формы комля очень высокая и по коэффициенту корреляции равна не меньше 0,8428. Максимальная теснота факторной связи равна 1,0000.

Далее примем правила отбора тех или иных бинарных факторных связей (1) для последующего математического и графического анализа.

В таблице 4 приведены интервалы изменения коэффициента корреляции при различных характеристиках связи между учтенными факторами.

Как известно из классической математической статистики, грубая классификация уровней коэффициента корреляции следующая:

а) до 0,3 - нет связи между факторами (то есть можно не учитывать эти связи, хотя они в других условиях проявления могут оказаться даже сильными по факторной связи);

б) от 0,3 до 0,7 - есть связь между двумя факторами, но она считается достаточно слабой, чтобы ее учитывать в практических рекомендациях, однако дополнение волновыми возмущениями может перевести слабую тесноту между факторами в сильные связи;

в) выше 0,7 - имеется сильная связь между переменными факторами даже при не волновых биотехнических закономерностях.

Однако такая шкала квантификации тесноты связи является очень грубой. Поэтому нами была предложена для технических экспериментов, в которых погрешность измерений не превышает 5%, другая шкала (третий столбец таблицы 5). Но для комля деревьев пришлось ввести еще два интервала, что нами было выполнено только при моделировании распределений рядов простых чисел. Это указывает на высокий уровень проявления закономерности комля березовых деревьев.

Направления измерения диаметра ствола по азимуту дают следующие группы по уровням адекватности модели образующей:

1) однозначная факторная связь при азимуте в 0 и 60°;

2) почти однозначная теснота связи при азимуте в 180, 240 и 300°;

3) сверхсильная факторная связь для азимутов 90 и 270°;

4) сильнейшая теснота связи для азимутов 30, 150 и 330°;

5) сильная факторная связь по азимутам в 120 и 210°.

Далее эти группы сопоставляются с теми природными и антропогенными объектами, которые окружают учетное дерево и много лет воздействуют на его развитие и рост.

Предлагаемый способ обладает простотой измерений, устройство простотой изготовления в любых условиях применения, например в исследованиях, проводимых в школьных экологических кружках.

Похожие патенты RU2535751C2

название год авторы номер документа
СПОСОБ АНАЛИЗА ОТНОСИТЕЛЬНОГО СБЕГА КОМБЛЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА 2012
  • Мазуркин Петр Матвеевич
  • Алгасова Мария Александровна
RU2529058C2
СПОСОБ АНАЛИЗА ФОРМЫ КОМЛЯ ДЕРЕВА 2012
  • Мазуркин Петр Матвеевич
  • Алгасова Мария Александровна
RU2529167C2
СПОСОБ ИЗМЕРЕНИЯ ДИАМЕТРА СТВОЛА ДЕРЕВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Мазуркин Петр Матвеевич
  • Кудрявцева Анна Евгеньевна
RU2540557C2
СПОСОБ АНАЛИЗА ДРЕВЕСНОГО СТВОЛА 2001
  • Верхунов П.М.
  • Мазуркин П.М.
RU2201593C2
СПОСОБ АНАЛИЗА КОМЛЯ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА 2012
  • Мазуркин Петр Матвеевич
  • Алгасова Мария Александровна
RU2529164C2
СПОСОБ АНАЛИЗА СТВОЛА И КРОНЫ ДЕРЕВА ЕЛИ 2008
  • Мазуркин Петр Матвеевич
  • Попова Анна Олеговна
RU2376749C1
СПОСОБ ИЗМЕРЕНИЯ УЧЕТНЫХ ДЕРЕВЬЕВ ВОКРУГ ЛЕСНОЙ ПОЛЯНЫ 2010
  • Мазуркин Петр Матвеевич
  • Березин Сергей Александрович
  • Марушева Виктория Эдуардовна
RU2446675C1
СПОСОБ АНАЛИЗА КРОНЫ И МЕСТА ПРОИЗРАСТАНИЯ БЕРЕЗЫ НА СКЛОНЕ ОВРАГА 2012
  • Мазуркин Петр Матвеевич
  • Алгасова Мария Александровна
RU2525262C2
СПОСОБ АНАЛИЗА ДИНАМИКИ РОСТА В ОНТОГЕНЕЗЕ ЗАГРЯЗНЕННЫХ ЛИСТЬЕВ БЕРЕЗЫ ОКОЛО АВТОМОБИЛЬНОЙ ДОРОГИ 2015
  • Мазуркин Петр Матвеевич
  • Кудряшова Анастасия Игоревна
RU2597643C1
СПОСОБ АНАЛИЗА СТВОЛА МОДЕЛЬНОГО ДЕРЕВА 2008
  • Мазуркин Петр Матвеевич
  • Попова Анна Олеговна
RU2376750C1

Иллюстрации к изобретению RU 2 535 751 C2

Реферат патента 2014 года СПОСОБ ИЗМЕРЕНИЯ ОБРАЗУЮЩЕЙ КОМЛЯ ДЕРЕВА

Изобретение относится к дендрометрии и может быть использовано в индикации природной среды, в частности по комлевой части растущих в различных экологических условиях произрастания деревьев. Изобретение также может быть использовано при разработке мер по улучшению качества лесных и нелесных древостоев с учетом закономерностей формы ствола учетных деревьев по диаметру в зависимости от высоты и азимута его измерения. Способ включает измерение диаметра на высоте 1,3 м от уровня почвы по двум взаимно перпендикулярным направлениям север-юг и восток-запад для изучения влияния сторон света. Измерения диаметра выполняют по заданным направлениям азимута на разных высотах от поверхности почвы. Каждое направление азимута принимают за отдельную образующую линию комля дерева. Затем по измеренным значениям диаметра выполняют статистическое моделирование для выявления закономерности изменения каждой образующей линии комля. По параметрам выявленных закономерностей проводят анализ параметров комля учетного дерева и сопоставляют с объектами вокруг места произрастания, влияющими на развитие и рост учетного дерева. Способ обеспечивает повышение точности измеренных значений диаметра ствола на разных высотах при одном и том же значении азимута направления измерения диаметра, а также повышение функциональных возможностей анализа комля ствола по выявленным закономерностям образующих по разным направлениям азимута. 5 з.п. ф-лы, 4 ил., 5 табл., 1 пр.

Формула изобретения RU 2 535 751 C2

1. Способ измерения образующей комля дерева, характеризующийся тем, что осуществляют измерение диаметра на высоте 1,3 м от уровня почвы по двум взаимно перпендикулярным направлениям север-юг и восток-запад для изучения влияния сторон света, при этом дополнительные измерения диаметра выполняют по заданным направлениям азимута через 30 градусов по азимуту на разных высотах от поверхности почвы, при этом каждое направление азимута принимают за отдельную образующую линию комля дерева, затем по измеренным значениям диаметра выполняют статистическое моделирование для выявления закономерности изменения каждой образующей линии комля, а по параметрам выявленных закономерностей проводят анализ параметров комля учетного дерева для сопоставления с объектами вокруг места произрастания, влияющими на развитие и рост учетного дерева.

2. Способ измерения образующей комля дерева по п.1, отличающийся тем, что диаметры по разным азимутам измеряют по крайней мере в четырех поперечных сечениях комля: на уровне высоты 1,3 м от поверхности почвы; между первым уровнем и корневой шейкой ствола дерева; на уровне корневой шейки ствола дерева и ниже уровня корневой шейки, но не доходя поверхности почвы при сохранении формы комля без перехода на корни первого порядка.

3. Способ измерения образующей комля дерева по п.1, отличающийся тем, что дополнительно в каждом уровне высоты для сопоставления измеряют периметр поперечного сечения комля учетного дерева.

4. Способ измерения образующей комля дерева по п.1, отличающийся тем, что по измеренным в каждом азимутальном направлении диаметрам комля отдельно проводят анализ образующей с вычислением коэффициентов закомелистости и дополнительно по выявленным закономерностям формы образующей линии определяют также теоретический диаметр на уровне поверхности почвы.

5. Способ измерения образующей комля дерева по п.1, отличающийся тем, что математическую закономерность каждой боковой линии образующей комля по заданному азимуту выявляют по общей формуле:

где Dh - переменный диаметр поперечного сечения комля в данном месте измерения на разных высотах от поверхности почвы, см;
D1 - диаметр утолщения комля на нулевой высоте по сравнению с высотой 1,3 м от поверхности почвы, см;
D0 - расчетный диаметр ствола на высоте 1,3 м от поверхности почвы по формуле, см;
h - высота от поверхности почвы не менее в четырех поперечных сечениях комля учетного дерева, при этом некий размер на поверхности почвы получает значение высоты h=0;
a1, a2 - параметры статистической модели, зависящие от формы боковой линии образующей поверхности комля ствола в заданном направлении азимута, причем:
а1 - активность спада, то есть относительного сбега от крайних корней первого порядка до корневой шейки и дальше на стволе дерева до высоты 1,3 м, переменного диаметра поперечного сечения комля учетного дерева по боковой линии в заданном направлении азимута;
а2 - интенсивность спада образующей ствола дерева от начала корней до высоты 1,3 м от поверхности почвы.

6. Способ измерения образующей комля дерева по п.5, отличающийся тем, что каждая форма образующей линии, после проведения измерений и моделирования по ним с выявлением значений параметров устойчивых биотехнических закономерностей по общему закону образующей линии, сопоставляется с окружающими учетное дерево природными и антропогенными объектами.

Документы, цитированные в отчете о поиске Патент 2014 года RU2535751C2

АНУЧИН Н.П., Лесная таксация, Москва-Ленинград, ГОСЛЕСБУМИЗДАТ, 1960, с
Видоизменение прибора для получения стереоскопических впечатлений от двух изображений различного масштаба 1919
  • Кауфман А.К.
SU54A1
RU 2007139834 A, 10.05.2009
СПОСОБ ИЗМЕРЕНИЯ УЧЕТНОГО ДЕРЕВА 2002
  • Мазуркин П.М.
  • Кошкина Т.А.
RU2224418C1
СПОСОБ АНАЛИЗА КОМЛЕВОЙ ЧАСТИ РАСТУЩЕГО ДЕРЕВА 2004
  • Мазуркин П.М.
  • Михайлова Т.Ф.
RU2254707C1

RU 2 535 751 C2

Авторы

Мазуркин Петр Матвеевич

Кудрявцева Анна Евгеньевна

Даты

2014-12-20Публикация

2013-02-01Подача