УСТАНОВКА БАКТЕРИАЛЬНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ ТЕХНОГЕННЫХ ОТХОДОВ Российский патент 2015 года по МПК C22B3/18 C22B7/00 

Описание патента на изобретение RU2537631C1

Область техники

Полезная модель относится к установкам для извлечения металлов из техногенных отходов (в том числе шлаков) путем бактериального выщелачивания мокрым способом с добавлением микроорганизмов.

Уровень техники

Известна установка для бактериального выщелачивания металлов из техногенных отходов, включающая корпус реактора, устройство для подачи пульпы, систему инжекции и диффузии воздуха для смешивания и подачи воздуха, необходимого для проведения процесса, а также патрубок вывода пульпы (Международная РСТ-заявка WO 2013057557 А1. Bioleaching bioreactor with a system for injection and diffusion of air. МПК С22В 3/18 (2006.01), B01F 7/16 (2006.01), B01J 8/00 (2006.01). Опубликовано 25.04.2013.). Степень выщелачивания металлов из техногенных отходов, в частности редкоземельных, при ее использовании составляет от 20 до 30%.

Существенным недостатком известной установки является недостаточно высокая степень извлечения металлов, а также сложность установки и ее слабая управляемость.

Наиболее близким техническим решением является установка для бактериального выщелачивания металлов из техногенных отходов, включающая аппарат для накопления биомассы микроорганизмов в жидкой среде техногенных отходов и аппарат для выщелачивания металлов из техногенных отходов (Каравайко Г. и др. Биотехнология металлов. Практическое руководство. - М.: Центр международных проектов ГКНТ - 1989, с.193-196). Аппараты этой установки выполнены в виде цилиндрических резервуаров, внутри которых размещены мешалки. Степень выщелачивания металлов, в частности редкоземельных, при осуществлении процесса в такой установке составляет от 30 до 45%.

Недостатками установки являются относительно невысокая степень выщелачивания, а также большие габариты установки.

Раскрытие полезной модели

Задачей полезной модели является увеличение степени выщелачивания, повышение управляемости процесса и уменьшение габаритов установки.

Задача решается тем, что предложена установка для бактериального выщелачивания металлов из техногенных отходов, включающая аппарат для накопления биомассы микроорганизмов в жидкой среде техногенных отходов и аппарат для выщелачивания металлов из техногенных отходов, причем введены узел для выделения металлов из жидкой среды и блок регенерации выщелачивающих растворов, в качестве аппарата для накопления биомассы микроорганизмов используется аппарат с турбинной мешалкой и выносным контуром охлаждения, а в качестве аппарата для выщелачивания металлов использован многокамерный флотационный аппарат с регулируемыми устройствами перетока жидкой среды с техногенными отходами из камеры в камеру и с изменяемыми условиями аэрации и интенсивностью перемешивания, и в качестве узла выделения металлов флотационный аппарат для ионной флотации, и в качестве блока регенерации выщелачивающих растворов резервуар с пневматической системой аэрации. В аппарате для накопления биомассы микроорганизмов турбинная мешалка установлена над днищем аппарата на уровне от 1:10 до 3:10 от высоты аппарата.

Устройства для перетока жидкой среды с отходами выполнены в виде, например, гибких трубок с регулируемым расположением по высоте. Флотационный аппарат для ионной флотации представляет собой флотоотстойник, выполненный в виде емкости с кондиционирующей камерой, рабочий объем которой составляет от 0,1 до 0,5 всего рабочего объема флотоотстойника, камерой флотации и выходной камерой. В блоке регенерации выщелачивающих растворов установлены пневматические аэраторы с деформируемыми мембранами.

Перечень фигур

На фиг.1 изображена принципиальная схема установки бактериального выщелачивания металлов из техногенных отходов.

На фиг.2 изображен аппарат накопления биомассы микроорганизмов и бактериального выщелачивания металлов из техногенных отходов с совмещенными камерами накопления биомассы микроорганизмов и бактериального выщелачивания металлов.

На фиг.3 изображены аппарат накопления биомассы микроорганизмов и бактериального выщелачивания металлов из техногенных отходов с раздельными камерами накопления биомассы микроорганизмов и бактериального выщелачивания металлов.

На фиг.4 изображен узел выделения металлов из жидкой среды.

На фиг.5 изображен блок регенерации выщелачивающих растворов.

Осуществление полезной модели

Принципиальная схема установки бактериального выщелачивания металлов из техногенных отходов (фиг.1) включает в себя аппарат для накопления биомассы аборигенных микроорганизмов с выносным контуром охлаждения, аппарат для выщелачивания металлов из техногенных отходов, узел выделения металлов из жидкой среды и блок регенерации выщелачивающих растворов.

Аппарат для накопления биомассы микроорганизмов и бактериального выщелачивания металлов из техногенных отходов с совмещенными камерами накопления биомассы микроорганизмов и бактериального выщелачивания металлов из техногенных отходов (фиг.2) состоит из корпуса установки 11 с входным и выходным патрубками 2 и 9 соответственно. Установка разделена на несколько камер: одна камера накопления биомассы аборигенных микроорганизмов 3 с выносным контуром охлаждения 1, в которой установлена турбинная мешалка 4, и остальные камеры бактериального выщелачивания 8, в которых установлены аэраторы 10, например, в виде пропеллерных мешалок. Разделение камер осуществлено посредством перегородок с регулируемыми устройствами перетока жидкой среды с отходами, представляющие собой, например, гибкие трубки 5, закрепленные хомутами 7. Для исключения перелива в перегородках предусмотрены окна 6.

Установка бактериального выщелачивания металлов из техногенных отходов работает следующим образом. В рабочее пространство аппарата накопления биомассы микроорганизмов 3 подают культуральную жидкость с аборигенными микроорганизмами через входной патрубок 2 и техногенные отходы, предварительно прошедшие подготовку, например, сепарацию золошлаков на концентрационных столах, при этом происходит их постоянное перемешивание и аэрирование посредством турбинной мешалки 4, установленной для наилучшего перемешивания над днищем аппарата на уровне от 1:10 до 3:10 от высоты аппарата. Охлаждение пульпы осуществляется с помощью выносного контура охлаждения 1 для поддержания оптимальных условий для жизнедеятельности микроорганизмов. После накопления достаточного количества микроорганизмов пульпа подается последовательно в камеры бактериального выщелачивания 8, где происходит постоянное перемешивание и аэрирование пульпы посредством, например, пропеллерных мешалок 10. Переток пульпы из одной камеры бактериального выщелачивании в другую осуществляется с помощью регулируемых устройств перетока жидкой среды с отходами, представляющих собой, например, гибкие трубки 5 для регулирования положения выходных отверстий по высоте, что определяет производительность установки. Фиксация трубок осуществляется хомутами 7.

В зависимости от используемого сырья, в частности трудно выщелачиваемых техногенных отходов, аппарат может быть выполнен с отдельной камерой накопления биомассы микроорганизмов и камерой бактериального выщелачивания металлов из техногенных отходов (фиг.3).

После завершения процесса бактериального выщелачивания пульпа подается в узел выделения металлов (фиг.4), представляющий собой флотоотстойник, выполненный в виде емкости с кондиционирующей камерой, рабочий объем которой для улучшения подготовки пульпы к последующей ионной флотации составляет от 0,1 до 0,5 всего рабочего объема флотоотстойника, камерой флотации и выходной камерой. В узле выделения металлов происходит разделение пульпы на жидкую и твердую фазу, а также происходит концентрирование металлов посредствам ионной флотации в пенном продукте.

Затем отделенная во флотоотстойнике жидкая фаза направляется в блок регенерации выщелачивающих растворов (фиг.5), в котором установлены пневматические аэраторы с деформируемыми мембранами для исключения забивания пор и выхода аэратора из строя. После регенерации раствор подают в аппарат накопления биомассы микроорганизмов.

Пример использования установки.

Бактериальное выщелачивание редкоземельных и благородных металлов из золошлаков Алексинской ТЭЦ проводили с использованием предлагаемой установки в следующей последовательности:

1. Предварительно обработали золошлаковые материалы на концентрационном столе.

2. Концентрат смешивали с выщелачивающим раствором и далее осуществляли процесс накопления биомассы аборигенных серо- и железоокисляющих микроорганизмов, содержащихся в исходных золошлаках, до концентрации клеток порядка 106…107 кл/мл в аппарате накопления биомассы микроорганизмов.

3. Пульпу подали в аппарат биовыщелачивания, в котором проводилось выщелачивание.

4. После завершения процесса бактериального выщелачивания пульпу подали в узел выделения металлов, где происходит разделение пульпы на жидкую и твердую фазы во флотоотстойнике, а также концентрирование ионов металлов в пенном продукте.

5. Жидкую фазу подали в блок регенерации выщелачивающих растворов, а затем направили в аппарат накопления биомассы микроорганизмов.

6. В результате по завершении процесса бактериального выщелачивания получили извлечение по редкоземельным металлам: скандий - 63,5%; иттрий - 61,9%; лантан - 59,8% и по благородным металлам: золото - 78,4%; серебро - 72,6%.

В случае использования ранее известной установки для бактериального извлечения (по прототипу) извлечение металлов составило соответственно: скандий - 35,8%; иттрий - 33,6%; лантан - 41,3%; золото - 59,7%; серебро - 61,2%.

Таким образом, предлагаемая установка бактериального выщелачивания металлов из отходов позволяет осуществить более эффективное извлечение металлов, в частности повысить степень извлечения редкоземельных металлов примерно на 10…35%, благородных металлов на 10…25%, а также уменьшить габариты, занимаемые установкой, за счет объединения камер на 15…25% и повысить управляемость процесса за счет возможности изменять производительность установки.

Похожие патенты RU2537631C1

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ И БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ЗОЛОШЛАКОВ 2013
  • Ксенофонтов Борис Семенович
  • Козодаев Алексей Станиславович
  • Таранов Роман Александрович
  • Виноградов Максим Сергеевич
  • Балина Алена Антоновна
  • Петрова Елена Владимировна
RU2537634C1
СПОСОБ БАКТЕРИАЛЬНОГО ВЫЩЕЛАЧИВАНИЯ РЕДКОЗЕМЕЛЬНЫХ И БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ЗОЛОШЛАКОВ 2014
  • Ксенофонтов Борис Семенович
  • Козодаев Алексей Станиславович
  • Таранов Роман Александрович
  • Виноградов Максим Сергеевич
  • Сеник Елена Владимировна
  • Воропаева Алена Антоновна
RU2580258C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ МИНЕРАЛЬНЫХ ПРОДУКТОВ С ПРИМЕНЕНИЕМ БАКТЕРИЙ ДЛЯ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ 2009
  • Крылова Любовь Николаевна
  • Травникова Ольга Николаевна
  • Назимова Марина Ивановна
  • Травников Владимир Николаевич
RU2418870C2
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ БИООКИСЛЕНИЯ СУЛЬФИДНЫХ КОНЦЕНТРАТОВ 2013
  • Крылова Любовь Николаевна
  • Сергеева Ирина Артемьевна
  • Крылов Николай Владимирович
RU2552207C1
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ РУД И ПИРРОТИНОВОГО КОНЦЕНТРАТА 2008
  • Суханова Марина Александровна
  • Пивоварова Татьяна Александровна
  • Меламуд Виталий Самуилович
RU2367691C1
СПОСОБ ПЕРЕРАБОТКИ ТЕХНОГЕННОГО ПОЛИМЕТАЛЛИЧЕСКОГО СЫРЬЯ ДЛЯ ИЗВЛЕЧЕНИЯ СТРАТЕГИЧЕСКИХ МЕТАЛЛОВ 2019
  • Александрова Татьяна Николаевна
  • Николаева Надежда Валерьевна
  • Кузнецов Валентин Вадимович
  • Савельева Яна Сергеевна
RU2716345C1
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ УПОРНЫХ ЗОЛОТОМЫШЬЯКОВЫХ РУД 2005
  • Совмен Хазрет Меджидович
  • Аслануков Рауф Яхъяевич
  • Воронина Ольга Борисовна
RU2291909C1
СПОСОБ ЧАНОВОГО БАКТЕРИАЛЬНОГО ВЫЩЕЛАЧИВАНИЯ СУЛЬФИДСОДЕРЖАЩИХ ПРОДУКТОВ 2007
  • Крылова Любовь Николаевна
  • Панин Виктор Васильевич
  • Воронин Дмитрий Юрьевич
RU2337156C1
СПОСОБ ПЕРЕРАБОТКИ УПОРНЫХ ЗОЛОТО-МЫШЬЯКОВЫХ РУД И КОНЦЕНТРАТОВ 2003
  • Совмен Х.М.
  • Аслануков Р.Я.
RU2234544C1
СПОСОБ ПЕРЕРАБОТКИ ПЕРВИЧНЫХ ЗОЛОТОСУЛЬФИДНЫХ РУД 2004
  • Совмен В.К.
  • Гуськов В.Н.
RU2256712C1

Иллюстрации к изобретению RU 2 537 631 C1

Реферат патента 2015 года УСТАНОВКА БАКТЕРИАЛЬНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ ТЕХНОГЕННЫХ ОТХОДОВ

Изобретение относится к бактериальному выщелачиванию металлов из техногенных отходов. Установка для бактериального выщелачивания металлов из техногенных отходов включает аппарат для накопления биомассы микроорганизмов в жидкой среде с техногенными отходами, аппарат для выщелачивания металлов из техногенных отходов, узел для выделения металлов из жидкой среды с техногенными отходами в виде аппарата для ионной флотации и блок регенерации выщелачивающих растворов в виде резервуара с пневматической системой аэрации. Аппарат для накопления биомассы микроорганизмов оснащен турбинной мешалкой и выносным контуром охлаждения. В качестве аппарата для выщелачивания металлов использован многокамерный флотационный аппарат с устройствами перетока жидкой среды с техногенными отходами из камеры в камеру, выполненный с возможностью изменения условий аэрации и интенсивности перемешивания. Обеспечивается увеличение степени выщелачивания металлов из техногенных отходов. 4 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 537 631 C1

1. Установка бактериального выщелачивания металлов из техногенных отходов, включающая аппарат для накопления биомассы микроорганизмов в жидкой среде c техногенными отходами и аппарат для выщелачивания металлов из техногенных отходов, отличающаяся тем, что она оснащена узлом для выделения металлов из жидкой среды в виде флотационного аппарата для ионной флотации и блоком регенерации выщелачивающих растворов в виде резервуара с пневматической системой аэрации, при этом аппарат для накопления биомассы микроорганизмов оснащен турбинной мешалкой и выносным контуром охлаждения, а в качестве аппарата для выщелачивания металлов использован многокамерный флотационный аппарат с устройствами перетока жидкой среды с техногенными отходами из камеры в камеру, выполненный с возможностью изменения условий аэрации и интенсивности перемешивания.

2. Установка по п.1, отличающаяся тем, что в аппарате для накопления биомассы микроорганизмов турбинная мешалка установлена над днищем аппарата на уровне 1:10 до 3:10 от высоты аппарата.

3. Установка по п.1, отличающаяся тем, что устройства для перетока жидкой среды с техногенными отходами из камеры в камеру выполнены в виде гибких трубок, с возможностью регулировки расположения по высоте их входных и выходных отверстий.

4. Установка по п.1, отличающаяся тем, что флотационный аппарат для ионной флотации представляет собой флотоотстойник, выполненный в виде емкости с кондиционирующей камерой, рабочий объем которой для улучшения подготовки пульпы к последующей ионной флотации составляет от 0,1 до 0,5 всего рабочего объема флотоотстойника, камерой флотации и выходной камерой.

5. Установка по п.1, отличающаяся тем, что в блоке регенерации выщелачивающих растворов установлены пневматические аэраторы с деформируемыми мембранами.

Документы, цитированные в отчете о поиске Патент 2015 года RU2537631C1

КАРАВАЙКО Г
и др., Биотехнология металлов
Практическое руководство, М., ЦМП ГКНТ, 1989, с.193-196
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ СУЛЬФИДНОГО МИНЕРАЛЬНОГО СЫРЬЯ 2011
  • Крылова Любовь Николаевна
  • Гусаков Максим Сергеевич
  • Рябцев Дмитрий Александрович
  • Адамов Эдуард Владимирович
  • Рощупко Павел Владиславович
RU2468098C1
Аппарат для выщелачивания руд и концентратов 1977
  • Полькин Степан Иванович
  • Адамов Эдуард Владимирович
  • Панин Виктор Васильевич
  • Дятлов Валерий Дмитриевич
  • Гришин Сергей Игоревич
SU707985A1
US 4530763 A, 23.07.1985;
КАТОДНЫЙ ПРИЕМНИК АППАРАТА ДЛЯ ЭЛЕКТРИЧЕСКОЙ ТЕЛЕСКОПИИ С КАТОДНЫМ ПУЧКОМ 1925
  • Чернышев А.А.
SU3499A1
WO 2013057557 A1, 25.04.2013

RU 2 537 631 C1

Авторы

Ксенофонтов Борис Семенович

Петрова Елена Владимировна

Виноградов Максим Сергеевич

Козодаев Алексей Станиславович

Таранов Роман Александрович

Балина Алена Антоновна

Даты

2015-01-10Публикация

2013-10-04Подача