Область техники
Предлагаемое изобретение относится к области переработки отходов, конкретно к способам извлечения ценных металлов из техногенных отходов, а именно к способам извлечения редкоземельных металлов из золошлаков, образующихся при сгорании каменного угля, в том числе на предприятиях энергетики.
Уровень техники
Известен способ извлечения редкоземельных металлов из золошлаков энергетических предприятий, включающий подготовку золошлаков, смешивание их с выщелачивающими растворами, накопление биомассы микроорганизмов, бактериальное выщелачивание редкоземельных металлов, разделение полученной суспензии на осадок и осветленную жидкость с выделением из последней редкоземельных металлов и обезвоживание осадка (патент Японии JP 06315371. Extraction of metal oxide from coal fly ash. МПК A62D 3/00; C22B 3/18; Опубликовано 15.11.1994).
Существенным недостатком известного способа являются низкий уровень извлечения редкоземельных металлов из золошлаков энергетических предприятий, а также высокие энергозатраты.
Наиболее близким техническим решением является способ бактериального выщелачивания редкоземельных и благородных металлов из золошлаков (патент США US 5278069 (A). Bioleaching method for the extraction of metals from coal fly ash using thiobacillus. МПК C12N 1/20; C22B 3/00; C12R 1/01; C22B 3/18. Опубликовано 11.01.1994), включающий подготовку золошлаков, смешение их с выщелачивающими растворами, накопление биомассы микроорганизмов, бактериальное выщелачивание редкоземельных и благородных металлов, разделение полученной суспензии на осадок и осветленную жидкость с выделением из последней редкоземельных и благородных металлов и обезвоживание осадка.
Существенным недостатком известного способа является недостаточно высокая степень извлечения редкоземельных металлов, а также высокие энергозатраты.
Раскрытие изобретения
Задачей изобретения является повышение эффективности извлечения редкоземельных и благородных металлов из золошлаков.
Задача решается за счет того, что предложен способ извлечения редкоземельных и благородных металлов из золошлаков энергетических предприятий, включающий подготовку золошлаков, смешение их с выщелачивающими растворами, накопление биомассы микроорганизмов, в частности бактерий рода Acidithiobacillales, бактериальное выщелачивание редкоземельных и благородных металлов, разделение полученной суспензии на осадок и осветленную жидкость с выделением из последней редкоземельных и благородных металлов и обезвоживание осадка. При этом на стадии накопления биомассы микроорганизмов в смесь добавляют насыщенный раствор карбоната кальция в количестве от 1 до 10% от расхода выщелачивающего раствора, а бактериальное выщелачивание редкоземельных и благородных металлов проводят в режиме многокамерной флотации с интенсивностью аэрации 0,1…0,5 м3/м2·мин, причем интенсивность аэрации в каждой последующей камере снижают по сравнению с предыдущей на 5…10%. В качестве микроорганизмов используют бактерии рода Acidithiobacillales. Флотацию осуществляют с использованием мелкодисперсной аэрации со средним размером пузырьков от 20 до 300 мкм. Размер пузырьков в каждой последующей камере увеличивают на 10…15%.
Осуществление изобретения
Предлагаемый способ осуществляют в несколько этапов:
1. Сепарация золошлаков на концентрационных столах.
Пример 1.
Бактериальное выщелачивание редкоземельных и благородных металлов из золошлаков Алексинской ТЭЦ проводили следующим образом:
1. Обработка золошлаковых материалов на концентрационном столе.
2. Смешение полученного в результате обработки концентрата с выщелачивающим раствором.
3. Накопление биомассы аборигенных серо- и железоокисляющих микроорганизмов с доминированием бактерий рода Acidithiobacillales, содержащихся в исходных золошлаках, до концентрации клеток порядка 106…107 кл/мл. При этом добавляли насыщенный раствор СаСО3 в объеме 1% от количества выщелачивающего раствора.
4. Проведение бактериального выщелачивания редкоземельных металлов в течение 3 суток в режиме многокамерной флотации (4 камеры) с интенсивностью аэрации в первой камере 0,5 м3/м2·мин, причем в каждой последующей камере интенсивность аэрации снижали по сравнению с предыдущей на 5% и интенсивность аэрации соответственно составила во второй 0,475 м3/м2·мин, в третьей 0,451 м3/м2·мин, в четвертой 0,428 м3/м2·мин. Средний размер пузырьков в первой камере составил 20 мкм, причем в каждой последующей камере размер пузырьков увеличивали на 10%, и размер пузырьков во второй камере составил 22 мкм, в третьей 24 мкм, в четвертой 27 мкм.
5. Разделение полученной суспензии на осадок и осветленную жидкость с выделением из последней редкоземельных и благородных металлов и обезвоживание осадка.
В результате по завершении процесса бактериального выщелачивания получили извлечение по редкоземельным металлам:
Скандий - 63,5%
Иттрий - 61,9%
Лантан - 59,8%
По благородным металлам:
Золото - 78,4%
Серебро - 72,6%
В случае бактериального извлечения по известному способу (прототипу) извлечение металлов составило соответственно: скандий - 35,8%; иттрий - 33,6%; лантан - 41,3%; золото - 59,7%; серебро - 61,2%.
Пример 2.
Бактериальное выщелачивание редкоземельных и благородных металлов осуществляли из золошлаков Каширской ГРЭС с их предварительной обработкой на концентрационном столе. Полученный в результате такой обработки концентрат смешивали с выщелачивающим раствором и проводили дальнейшие операции, как и в примере 1, за исключением того, что расход насыщенного раствора карбоната кальция на стадии накопления биомассы составил 5% от расхода выщелачивающего раствора, а интенсивность аэрации в режиме многокамерной флотации была равна в первой камере 0,3 м3/м2·мин, причем интенсивность аэрации в каждой последующей камере снижали по сравнению с предыдущей на 7,5%, и интенсивность аэрации соответственно составила во второй 0,278 м3/м2·мин, в третьей 0,257 м3/м2·мин, в четвертой 0,237 м3/м2·мин.
При этом средний размер пузырьков в первой камере составил 160 мкм, причем размер пузырьков в каждой последующей камере увеличивали на 12,5%, и размер пузырьков составил во второй камере 180 мкм, в третьей 203 мкм, в четвертой 228 мкм.
Затем проводили разделение полученной суспензии на осадок и осветленную жидкость с выделением из последней редкоземельных и благородных металлов и обезвоживание осадка.
В результате по завершении процесса бактериального выщелачивания получили следующее извлечение по редкоземельным металлам: скандий - 66,1%; иттрий - 68,3%; лантан - 61,4%; а по благородным металлам: золото - 81,3%; серебро - 82,6%. В случае известного способа получили: скандий - 35,8%; иттрий - 33,6%; лантан - 41,3%; золото - 59,7%; серебро - 61,2%.
Пример 3.
Бактериальное выщелачивание редкоземельных и благородных металлов осуществляли из золошлаков ТЭЦ-22 г. Москва с их предварительной обработкой на концентрационном столе. Полученный в результате такой обработки концентрат смешивали с выщелачивающим раствором и проводили дальнейшие операции, как и в примере 1, за исключением того, что расход насыщенного раствора карбоната кальция на стадии накопления биомассы составил 10% от расхода выщелачивающего раствора, а интенсивность аэрации в режиме многокамерной флотации в первой камере 0,5 м3/м2·мин, причем интенсивность аэрации в каждой последующей камере снижали по сравнению с предыдущей на 10%, и интенсивность аэрации составила соответственно во второй камере 0,45 м3/м2·мин, в третьей 0,405 м3/м2·мин, в четвертой 0,346 м3/м2·мин.
При этом средний размер пузырьков в первой камере составил 184 мкм, причем размер пузырьков в каждой последующей камере увеличивали на 15% и составил во второй камере 217 мкм, в третьей 255 мкм, в четвертой 300 мкм.
Затем проводили разделение полученной суспензии на осадок и осветленную жидкость с выделением из последней редкоземельных и благородных металлов и обезвоживание осадка.
В результате по завершении процесса бактериального выщелачивания получили следующее извлечение по редкоземельным металлам: скандий - 62,4%; иттрий - 61,6%; лантан - 62,8%; а по благородным металлам: золото - 79,5%; серебро - 80,6%.
В случае известного способа получили извлечение соответственно: скандий - 35,8%; иттрий - 33,6%; лантан - 41,3%; золото - 59,7%; серебро - 61,2%.
Таким образом, получен положительный эффект повышения извлечения по редкоземельным металлам, в частности по скандию примерно 26,6-30,3%; по иттрию - 28-34,7%; по лантану - 50,5-21,5%; по благородным металлам: золоту - 18,7-21,6%; серебру - 11,4-21,4%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ БАКТЕРИАЛЬНОГО ВЫЩЕЛАЧИВАНИЯ РЕДКОЗЕМЕЛЬНЫХ И БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ЗОЛОШЛАКОВ | 2014 |
|
RU2580258C1 |
УСТАНОВКА БАКТЕРИАЛЬНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ ТЕХНОГЕННЫХ ОТХОДОВ | 2013 |
|
RU2537631C1 |
Способ извлечения редкоземельных металлов и скандия из золошлаковых отходов | 2017 |
|
RU2657149C1 |
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ ЗОЛОТОСОДЕРЖАЩИХ КОНЦЕНТРАТОВ | 2005 |
|
RU2283358C1 |
СПОСОБ ВЫЩЕЛАЧИВАНИЯ ЦЕННЫХ КОМПОНЕНТОВ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ЗОЛЬНО-ШЛАКОВОГО МАТЕРИАЛА | 2013 |
|
RU2560627C2 |
СПОСОБ ЧАНОВОГО БАКТЕРИАЛЬНОГО ВЫЩЕЛАЧИВАНИЯ СУЛЬФИДСОДЕРЖАЩИХ ПРОДУКТОВ | 2007 |
|
RU2337156C1 |
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ МИНЕРАЛЬНЫХ ПРОДУКТОВ С ПРИМЕНЕНИЕМ БАКТЕРИЙ ДЛЯ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ | 2009 |
|
RU2418870C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ ФОСФОРСОДЕРЖАЩЕГО МИНЕРАЛЬНОГО СЫРЬЯ | 1991 |
|
RU2036148C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ МЕТАЛЛОВ ИЗ МИНЕРАЛЬНОГО СЫРЬЯ | 2000 |
|
RU2172786C1 |
СПОСОБ ПЕРЕРАБОТКИ СУЛЬФИДНЫХ РУД И ПИРРОТИНОВОГО КОНЦЕНТРАТА | 2008 |
|
RU2367691C1 |
Изобретение относится к способу извлечения редкоземельных и благородных металлов из золошлаков энергетических предприятий. Способ включает подготовку золошлаков, смешение их с выщелачивающим раствором, накопление биомассы микроорганизмов, бактериальное выщелачивание редкоземельных и благородных металлов, разделение полученной суспензии на осадок и осветленную жидкость с выделением из последней редкоземельных и благородных металлов. При этом на стадии накопления биомассы микроорганизмов добавляют насыщенный раствор карбоната кальция в количестве 1-10% от расхода выщелачивающего раствора. Бактериальное выщелачивание проводят в режиме многокамерной флотации с интенсивностью аэрации 0,1-0,5 м3/м2·мин, причем интенсивность аэрации в каждой последующей камере снижают по сравнению с предыдущей на 5-10%. В качестве микроорганизмов используют бактерии рода Acidithiobacillales. Флотацию осуществляют с использованием мелкодисперсной аэрации со средним размером пузырьков 20-300 мкм. Размер пузырьков в каждой последующей камере увеличивают на 10-15%. Техническим результатом изобретения является повышение извлечения редкоземельных и благородных металлов из золошлаков за счет интенсификации процесса культивирования организмов 3 з.п. ф-лы, 3 пр.
1. Способ извлечения редкоземельных и благородных металлов из золошлаков энергетических предприятий, включающий подготовку золошлаков, смешение их с выщелачивающим раствором, накопление биомассы микроорганизмов, бактериальное выщелачивание редкоземельных и благородных металлов, разделение полученной суспензии на осадок и осветленную жидкость с выделением из последней редкоземельных и благородных металлов и обезвоживание осадка, при этом на стадии накопления биомассы микроорганизмов добавляют насыщенный раствор карбоната кальция в количестве 1-10% от расхода выщелачивающего раствора, а бактериальное выщелачивание редкоземельных и благородных металлов проводят в режиме многокамерной флотации с интенсивностью аэрации 0,1-0,5 м3/м2·мин, причем интенсивность аэрации в каждой последующей камере снижают по сравнению с предыдущей на 5-10%.
2. Способ по п.1, отличающийся тем, что в качестве микроорганизмов используют бактерии рода Acidithiobacillales.
3. Способ по п.1, отличающийся тем, что флотацию осуществляют с использованием мелкодисперсной аэрации со средним размером пузырьков от 20 до 300 мкм.
4. Способ по п.1 или 3, отличающийся тем, что размер пузырьков в каждой последующей камере увеличивают на 10-15%.
US5278069 A, 11.01.1994 | |||
СПОСОБ ПОДГОТОВКИ ЗОЛЫ-УНОСА ОТ СЖИГАНИЯ УГЛЕЙ ДЛЯ ИСПОЛЬЗОВАНИЯ В ПРОИЗВОДСТВЕ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ | 1998 |
|
RU2138339C1 |
US 2001002312 A1, 31.05.2001 | |||
JP H06315371 A, 15.11.1994 | |||
US 6146444 A, 14.11.2000 | |||
WO 2004027099 A1, 01.04.2004 |
Авторы
Даты
2015-01-10—Публикация
2013-06-20—Подача