ТЕПЛООБМЕННОЕ УСТРОЙСТВО Российский патент 2015 года по МПК F25B21/02 

Описание патента на изобретение RU2537655C1

Область техники

Изобретение относится к холодильному оборудованию, а именно к термоэлектрическим холодильным установкам, и может быть использовано, например, для охлаждения воздуха в продовольственных кладовых на судах в жестких условиях эксплуатации, а также в устройствах кондиционирования воздуха.

Принцип работы теплообменного устройства (термоэлектрического модуля - ТЭМ) основан на эффекте Пельтье, когда при пропускании постоянного тока через контакты двух разнородных металлов (полупроводников), из которых состоит ТЭМ, на одном из контактов происходит охлаждение (поглощение тепла), а на другом - выделение тепла.

Уровень техники

Известны теплообменные термоэлектрические устройства, содержащие воздушные, гидравлические теплообменники, между которыми в тепловом контакте установлены два и более термоэлектрических охладителя, образующих плоский слой и, окруженных по периметру защитным барьером из низко теплопроводного материала, при этом теплообменники между собой стянуты винтами - RU 2187052 F25B 21/02, 14.12.2000, RU 2092753 F25B 21/02, 13.06.1996, RU 2364803 F25B 21/02, 18.09.2007, RU 2397074 B60H 1/32, 01.09.2008, RU 2234647 F25B 21/02, 27.11.2002.

В качестве ближайшего аналога (прототипа) выбран холодильный термоэлектрический блок RU 2092753, F25B 21/02, 13.06.1996. Блок содержит два и более термоохладителей ,на горячих и холодных спаях которых установлены радиаторы. Пространство между радиаторами и полость между горячим и холодным спаями заполнено теплоизоляционным влагонепроницаемым материалом, радиатор горячих спаев выполнен в виде автономных секций, закрепленных только на одном модуле термоохладителя, при этом радиатор и вентилятор для его обдува размещены в кожухе, имеющем форму диффузора с сужением в сторону радиатора. Отверстия для входа и выхода воздуха выполнены на противоположных торцевых сторонах кожуха.

К недостаткам прототипа и известных конструкций (например, RU 2397074 B60H 1/32, 01.09.2008), в которых тепловой контакт термоэлектрических охладителей с теплообменниками достигается стяжными винтами, следует отнести повышенную вероятность разрушения термоэлектрических охладителей, работающих в условиях постоянной силовой нагрузки (сжатии). Существующая концепция использования термоэлектрических охладителей, работающих "на прижим", основана на том, что для эффективной работы их следует как можно сильнее зажимать между теплообменными поверхностями (теплоотводами) для снижения термического сопротивления механического контакта теплообменивающихся поверхностей. Однако усилие стяжки может вызвать неравномерность сжатия, которое приводит к деформации теплообменников и к повреждению самих охладителей, например, разрушению керамических электротеплопереходов. Как показывает опыт работы и эксплуатации ТЭМ, термоэлектрические охладители не могут надежно работать в условиях постоянного сжатия. Тем не менее, известные изобретения предлагают мероприятия, направленные как на усиление сжатия охладителей, так и на его более равномерное распределение на поверхности сжатия. Например, в устройстве RU 2397074, В60Н 1/32, 01.09.2008 с этой целью предложены специальной формы пружины в виде коромысла, которые стягиваются резьбовой шпилькой, осуществляющей усилие стяжки до 200 кгс на термоэлектрический охладитель. Для создания вышеупомянутого усилия требуется шпилька с резьбой не менее М8, которая заметно увеличит теплопотери вследствие перетечки тепла с охлаждающего теплообменника к охлаждаемому. Для уменьшения таких теплопритоков усилие затяжки винтов передается на теплообменники через теплоизоляционные втулки, которые изготавливают, например, из пластических или тому подобных материалов. Высота втулок в известных устройствах из конструктивных соображений не превышает 3-6 мм, увеличение высоты теплоизоляционных втулок приведет к торможению воздушного потока на элементах крепежа и образованию вихревых потоков. Малая же высота втулок не дает возможности максимально использовать положительный эффект от их применения.

Задача, на решение которой направлено изобретение, заключается в создании новой надежной конструкции теплообменного устройства, работающей в жестких условиях эксплуатации на судах.

Технический результат изобретения заключается в повышении надежности за счет создания равномерного усилия сжатия теплообменивающихся поверхностей, увеличении срока работы.

Раскрытие изобретения

Поставленные задачи решены следующим образом. Теплообменное устройство состоит из стянутых винтами воздушного и водяного теплообменников, между которыми в тепловом контакте установлены термоэлектрические охладители, расположенные в виде прямоугольника и окруженные защитным барьером. Устройство отличается тем, что дополнительно введены упоры, расположенные по периметру и в центре прямоугольника, при этом высота упомянутых упоров превышает высоту термоэлектрических охладителей, а на поверхности термоэлектрических охладителей, которые контактируют с теплообменниками, нанесен слой теплопроводного материала. Упоры выполнены из низкотеплопроводного материала, например, стеклотекстолита. Устройство содержит термоэлектрические охладители в количестве n=24.

Кроме того, термоэлектрические охладители установлены на планки, которые выполнены из электроизоляционного материала и имеют профиль, удерживающий охладители от линейных перемещений.

Кроме того, винты, стягивающие воздушный и водяной теплообменники, дополнительно снабжены упорными втулками, выполненными из низкотеплопроводного материала, например, капролона, и установлены со стороны водяного теплообменника, при этом высота втулок не более высоты теплообменника.

Кроме того, винты, стягивающие воздушный и водяной теплообменники, выбраны в количестве, равном 10.

Осуществление изобретения

Заявляемое изобретение поясняется рисунками. На фиг.1 изображено устройство в разрезе, на фиг.2 - разрез по А-А фиг.1, на фиг. 3 - узел соединения ребра воздушного теплообменника.

Устройство содержит воздушный теплообменник 1 и водяной теплообменник 2, между которыми размещен плоский, прямоугольной формы слой из термоэлектрических охладителей 3 и датчиков температуры 4. Теплообменники 1 и 2 стянуты по контуру винтами 5. Усилие стяжки замыкается на упоры 6, которые установлены между теплообменниками по периметру и в центре. Винты 5 передают усилие на теплообменник 2 через нетеплопроводные упорные втулки 7. Каналы 8 в стенке теплообменника 2 соединяют полость, занятую термоэлектрическими охладителями 3, с клеммной коробкой 9, расположенной на внешней стороне теплообменника 2. На коробке установлена крышка 10, которая закреплена винтами с уплотнением (не показано). В коробке 9 выполнен сальниковый ввод 11 для установки кабеля наружных подключений. Провода от термоохладителей и датчиков температуры распаяны на клеммной плате 12, установленной в клеммной коробке 9. К этой же плате 12 подведен и подпаян кабель наружных подключений. В коробку помещены упаковки с силикагелем 13. Боковые поверхности термоэлектрических охладителей 3 по периметру окружены защитным барьером из двух резиновых жгутов 14 и охвачены снаружи единым сплошным защитным покрытием из кремнийорганического герметика 15.

Для улучшения теплообмена на поверхности контакта термоэлектрических охладителей 3 нанесена кремнийорганическая теплопроводная паста (КПТ-8). Охладители установлены на электроизоляционные планки 16. Ребра 17 воздушного теплообменника запрессованы в основании 18 теплообменника 1

Теплообменное устройство работает следующим образом. При его сборке теплообменники 1 и 2 стягивают винтами 5, до тех пор, пока теплообменники не сблизятся на расстояние, равное высоте упоров 6, которое на несколько десятых миллиметра превышает высоту термоэлектрических охладителей 3. Термоэлектрические охладители вначале испытывают некоторое давление, передаваемое на них от теплообменников через слой теплопроводного материала (кремнийорганическая паста, гель), но, когда упоры остановят сближение теплообменников, теплопроводный материал, обладая заметной текучестью, будет ослаблять давление на охладители. Когда толщина слоев по обеим сторонам охладителя станет равной разности высот упоров и охладителей, давление на последние прекратится, и вся дальнейшая работа устройства будет происходить при полностью механически разгруженных охладителях. С целью исключения перемещений (в условиях тряски и вибрации) термоэлектрических охладителей 3, связь которых с теплообменными поверхностями осуществлена только с помощью слоя теплопроводного материала, применены планки 16, выполненные из электроизоляционного материала и имеющие профиль, удерживающий охладители от линейных перемещений. Планки 16 винтами закреплены на стенке водяного теплообменника 2. На планках 16 также закреплены электрические проводники от термоэлектрических охладителей и датчиков температуры 4.

Так как слой пасты на поверхностях контакта термоэлектрических охладителей больше, чем, например, в известном устройстве RU 2397074, то эффективность его работы меньше. Она также уменьшается вследствие перетекания тепла через упоры с горячего (водяного) теплообменника на холодный. Однако тепловые потери по сравнению с прототипом, компенсируются за счет меньших теплоперетоков через стягивающие винты 5. Это объясняется тем, что в предлагаемом устройстве роль стягивающих винтов совершенно иная. Если в прототипе винты должны обеспечивать значительное усилие и потому они большого диаметра (или их количество больше при меньшем диаметре), то в предлагаемом устройстве роль винтов сводится к фиксации теплообменников друг относительно друга при сведении их до упоров 6. Для этого достаточно небольшого количества винтов с резьбой не более М5. В предлагаемом устройстве количество винтов равно 10 и оно определено не требованиями прочности, а необходимостью равномерного (по периметру) монтажа теплообменников друг с другом. Кроме того, перетечки тепла через винты могут быть еще более уменьшены за счет значительного, по сравнению с прототипом, увеличения высоты нетеплопроводных упорных втулок 7. При этом одновременно увеличивают и длину винтов, которые стягивают теплообменники. В предлагаемом изобретении высота упорных втулок может быть ограничена, например, уровнем верхней плоскости водяного теплообменника.

Таким образом, несмотря на то, что эффективность работы предлагаемого устройства близка к известным, надежность его работы будет значительно выше за счет силовой разгрузки термоэлектрических охладителей.

Защитный барьер термоэлектрических охладителей образован двумя жгутами квадратного сечения 14. Один жгут приклеен к воздушному теплообменнику 1, другой - к водяному 2. Между жгутами предусмотрен зазор от 0,5 до 2,0 мм. При обмазке снаружи жгутов кремнийорганическим герметиком 15 образуется сплошной защитный слой, перекрывающий зазор между жгутами. При включении устройства, когда температуры обоих теплообменников могут значительно отличаться, защитный барьер, обладая упругостью, сохраняет механическую прочность и паро-влаго-непроницаемость. Провода от термоэлектрических охладителей 3 и датчиков температуры 4 через каналы 8 в стенке водяного теплообменника 2 выводят в клеммную коробку 9. Клеммную коробку герметично закрывают крышкой 10, а кабель подключения проводят через сальниковую буксу. Таким образом, работа термоэлектрических охладителей 3 происходит в полностью герметичной зоне, в которую исключен доступ водяных паров. Для полного исключения в герметичной зоне остаточных паров воды в клеммную коробку вложена упаковка с силикагелем 13.

В предлагаемом изобретении использованы 24 термоэлектрических охладителя. Как показали проведенные испытания, это число является оптимальным количеством, обеспечивающим максимальное число комбинаций необходимых вариантов подключений. Устройство с 24 термоэлектрическими охладителями оптимально также по габаритам и массе (около 12 кг), что делает его удобным для использования в холодильных установках различной производительности.

С целью исключения разрушения мест запрессовки ребер 17 в основание 18 теплообменника 1 (при отрицательных температурах охлаждаемого воздуха в условиях выпадения росы и образования инея), зоны запрессовки (фиг.3) обрабатывают водостойким лаком, например, УР-231, который заполняет все неплотности, микротрещины и микрополости, которые неизбежно остаются после запрессовки ребер. Тем самым исключена возможность заполнения водой этих неплотностей и микротрещин. Таким образом, надежность работы ТЭМ модуля повышается.

При работе устройства на судах в водяной теплообменник подают охлаждающую воду, температура которой может достигать 5°C. При этом на внешних стенках теплообменника может выпадать роса. Длительное воздействие капельной влаги на стенки теплообменника способно вызвать усиленную коррозию. Кроме того, как показывает опыт, количество сконденсированной влаги на стенках теплообменника в течение часа может достигать 100 мл, что равносильно дополнительной тепловой нагрузке 60 Вт. При расчетной нагрузке на теплообменник 600 Вт дополнительная нагрузка от конденсата может быть принята во внимание. С целью повышения эффективности водяных теплообменников и повышения коррозионной устойчивости наружная поверхность водяных теплообменников покрыта жидким керамическим теплоизоляционным покрытием типа "Корунд", исключающим выпадение на покрытых поверхностях конденсата.

Похожие патенты RU2537655C1

название год авторы номер документа
ТЕПЛООБМЕННОЕ УСТРОЙСТВО 2014
  • Начкебия Александр Бежанович
RU2537647C1
ТЕРМОЭЛЕКТРИЧЕСКИЙ БЛОК ОХЛАЖДЕНИЯ 2012
  • Деревянко Валерий Александрович
  • Гладущенко Владимир Николаевич
  • Гейнц Эльмар Рудольфович
  • Коков Евгений Георгиевич
  • Васильев Евгений Николаевич
  • Руссков Владимир Васильевич
RU2511922C1
ТЕРМОЭЛЕКТРИЧЕСКОЕ ОХЛАЖДАЮЩЕЕ УСТРОЙСТВО 2011
  • Зайков Геннадий Андреевич
RU2450221C1
СПОСОБ УСТАНОВКИ ТЕРМОЭЛЕКТРИЧЕСКИХ МОДУЛЕЙ 2019
  • Фролов Юрий Николаевич
  • Устич Виктор Григорьевич
  • Петров Александр Павлович
  • Галашин Юрий Альбертович
RU2704568C1
Проточный охладитель молока 2021
  • Трунов Станислав Семенович
  • Тихомиров Дмитрий Анатольевич
  • Кузьмичев Алексей Васильевич
  • Ламонов Николай Григорьевич
RU2757618C1
КРИОСТАТИРОВАННАЯ ФОТОПРИЕМНАЯ СИСТЕМА ДЛЯ ВНЕАТМОСФЕРНОЙ АСТРОНОМИИ, КОСМИЧЕСКИХ ИССЛЕДОВАНИЙ И ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ 2001
RU2206027C2
Устройство для осушки воздуха герметичных отсеков космических аппаратов 2023
  • Басов Андрей Александрович
  • Быстров Александр Владимирович
  • Елчин Анатолий Петрович
  • Лексин Максим Александрович
  • Миляев Алексей Павлович
  • Прохоров Юрий Максимович
  • Филатов Николай Иванович
  • Гореликов Владимир Николаевич
RU2821278C1
ТЕРМОЭЛЕКТРИЧЕСКОЕ УСТРОЙСТВО ДЛЯ КОНТАКТНОГО ОХЛАЖДЕНИЯ ПОВЕРХНОСТЕЙ 2003
  • Таланкин В.П.
  • Таланкин В.В.
RU2240478C2
ТЕРМОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР 2013
  • Плеханов Сергей Иванович
  • Тереков Анатолий Яковлевич
  • Новиков Виктор Энгельсович
RU2529437C2
ОСУШИТЕЛЬ ВОЗДУХА ГЕРМЕТИЧНЫХ ОТСЕКОВ КОСМИЧЕСКИХ АППАРАТОВ 2000
  • Федотов В.К.
  • Цихоцкий В.М.
RU2180421C2

Иллюстрации к изобретению RU 2 537 655 C1

Реферат патента 2015 года ТЕПЛООБМЕННОЕ УСТРОЙСТВО

Изобретение относится к холодильному оборудованию, а именно, к термоэлектрическим холодильным установкам и может быть использовано, например, для охлаждения воздуха в продовольственных кладовых на судах в жестких условиях эксплуатации, а также в устройствах кондиционирования воздуха. Технический результат изобретения заключается в повышении надежности за счет создания равномерного усилия сжатия теплообменивающихся поверхностей, увеличении срока работы. Теплообменное устройство состоит из стянутых винтами воздушного и водяного теплообменников, между которыми в тепловом контакте установлены термоэлектрические охладители, расположенные в виде прямоугольника и окруженные защитным барьером. Устройство отличается тем, что дополнительно введены упоры, расположенные по периметру и в центре прямоугольника, при этом высота упомянутых упоров превышает высоту термоэлектрических охладителей, а на поверхности термоэлектрических охладителей, которые контактируют с теплообменниками, нанесен слой теплопроводного материала. Упоры выполнены из низкотеплопроводного материала. 4 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 537 655 C1

1. Теплообменное устройство, состоящее из стянутых винтами воздушного и водяного теплообменников, между которыми в тепловом контакте установлены термоэлектрические охладители, расположенные в виде прямоугольника и окруженные защитным барьером, отличающееся тем, что дополнительно введены упоры, расположенные по периметру и в центре прямоугольника, при этом высота упомянутых упоров превышает высоту термоэлектрических охладителей, а на поверхности термоэлектрических охладителей, которые контактируют с теплообменниками, нанесен слой из теплопроводного материала, при этом упомянутые охладители установлены на планки, а винты, стягивающие воздушный и водяной теплообменники, дополнительно снабжены упорными втулками, установленными со стороны водяного теплообменника, при этом высота втулок не более высоты теплообменника.

2. Теплообменное устройство по п. 1, отличающееся тем, что упоры выполнены из низкотеплопроводного материала, например стеклотекстолита.

3. Теплообменное устройство по п. 1, отличающееся тем, что планки, на которые установлены термоэлектрические охладители, выполнены из электроизоляционного материала и имеют профиль, удерживающий охладители от линейных перемещений.

4. Теплообменное устройство по п. 1, отличающееся тем, что термоэлектрические охладители выбраны в количестве n=24.

5. Теплообменное устройство по п. 1, отличающееся тем, что упорные втулки выполнены из низкотеплопроводного материала, например капролона.

Документы, цитированные в отчете о поиске Патент 2015 года RU2537655C1

ХОЛОДИЛЬНЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ БЛОК 1996
  • Аракелов Григорий Арамович
  • Васильев Олег Юрьевич
  • Гордеев Владимир Сергеевич
RU2092753C1
ТЕРМОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР "ЗОДИАК" 2001
  • Исаев Л.А.
  • Чичигин А.Ф.
RU2176191C1
ТЕРМОЭЛЕКТРИЧЕСКОЕ ОХЛАЖДАЮЩЕ-НАГРЕВАТЕЛЬНОЕ УСТРОЙСТВО 1996
  • Костин В.Е.
  • Макаровец Н.А.
  • Морозов Н.В.
  • Проскурин Н.М.
  • Семенов В.И.
  • Соколов А.С.
RU2110020C1
US 5584183 A, 17.12.1996
ТЕРМОЭЛЕКТРИЧЕСКИЙ КОНДИЦИОНЕР 2008
  • Авилов Виктор Захарович
  • Осипов-Ивановский Павел Фёдорович
  • Сгибнев Игорь Владимирович
  • Ханин Евгений Владимирович
  • Грибова Татьяна Ивановна
  • Копылов Александр Павлович
RU2397074C2

RU 2 537 655 C1

Авторы

Начкебия Александр Бежанович

Даты

2015-01-10Публикация

2013-12-20Подача