СПОСОБ ДИАГНОСТИКИ РАКА Российский патент 2015 года по МПК A61B5/08 G01N33/497 

Описание патента на изобретение RU2538625C1

Изобретение относится к медицине и касается диагностики рака у человека по исследованию выдыхаемого воздуха с помощью метода масс-спектрометрии с предварительным газохроматографическим разделением (ГХ-МС).

Несмотря на все достижения современной медицины, внедрение новых методов диагностики и лечения, заболеваемость и смертность от онкологических заболеваний во всем мире продолжает неуклонно расти. Хорошо известно, что рак является второй ведущей причиной смерти после болезней сердечно-сосудистой системы. Многочисленными исследованиями доказано, что прогноз заболевания в значительной степени зависит от своевременности постановки диагноза опухоли, что придает огромное значение ранней диагностике. К сожалению, у 60-80% больных с впервые установленным диагнозом рака определяются III-IV стадии заболевания. Возможными причинами столь поздней диагностики являются поздняя обращаемость пациентов, стертая клиническая картина, а также недостаточная онкологическая настороженность врачей первичного звена здравоохранения.

Таким образом, проблема ранней диагностики рака остается весьма актуальной, поскольку именно с этим связано прежде всего эффективное лечение заболевания. В настоящее время получают распространение методы изучения опухолевых маркеров для ранней диагностики заболевания. Широко известны опухолевые маркеры, специфичные для тех или иных опухолей, выявляемые в крови пациента. Опухолевые маркеры - это сложные вещества, чаще всего глико- или липопротеиды, которые определяются в значительно более высоких концентрациях в злокачественно-трансформированных клетках по сравнению с нормальными. До сих пор не найдено ни одного маркера, специфичного только для опухоли. Поэтому большинство маркеров, по причине их недостаточной чувствительности и специфичности, непригодны для диагностики онкопатологии в бессимптомной популяции. Однако в группах повышенного риска, с более высокой частотой онкологических заболеваний, применение маркеров помогает выявлению опухолей. Поэтому, несмотря на ограниченные возможности, маркеры все чаще используются в клинике. Они оказывают реальную помощь при оценке прогноза, радикальности операции, при мониторинге терапии, наблюдении после достижения ремиссии. Известно более 200 онкомаркеров, однако в повседневной клинической практике активно применяется незначительное их количество.

В клинической практике высокоспециализированных онкологических учреждений применение маркеров подтвердило их эффективность при раке предстательной железы (РСА), герминогенных опухолях (АФП, ХГЧ), раке яичников (СА 125), раке шейки матки (SCC), трофобластических опухолях (ХГЧ), раке молочной железы (РЭА; СА 15.3), раке легкого (РЭА; CYFRA 21.1; НСЕ), раке толстой кишки (РЭА; СА 19.9), раке поджелудочной железы (СА 19.9), раке желудка (РЭА; СА 19.9; СА 72.4), первичном раке печени (АФП; СА 19.9), раке мочевого пузыря (CYFRA 21.1; UBC), злокачественной меланоме (S 100) (Гордеев С.С. Опухолевые маркеры, их происхождение, роль и место в диагностике и лечении онкологических заболеваний. http://netoncology.ru/expert/diagnostics/2215).

Примером научного поиска и практического применения онкомаркеров является их изучение и внедрение при раке легкого. Европейской группой по изучению опухолевых маркеров (EGTM) рекомендовано определение следующих ОМ: при мелкоклеточном раке легкого - нейрон-специфической энолазы (НСЕ), маркера, ассоциированного с опухолями нейроэндокринной дифференцировки; при немелкоклеточном - CYFRA 21.1 (наиболее информативного при плоскоклеточном раке) и РЭА (при аденокарциноме и крупноклеточной карциноме). - Шелепова В.М. «Вестник Московского Онкологического Общества», №1, январь 2007.

Известен более простой способ определения веществ, имеющих значение в развитии рака легкого, с помощью газохроматографического метода (Т.В. Нурисламова, У.С. Бакунина. Разработка метода определения акрилонитрила в выдыхаемом воздухе. Вестник Тюменского государственного университета, 2011, №12, с.28-31).

Известен также способ определения рака выявлением онкомаркера в выдыхаемом воздухе человека с помощью газохроматографического метода (например, Е.В. Степанов. Методы высокочувствительного газового анализа молекул-биомаркеров в исследованиях выдыхаемого воздуха, 2005, Труды института общей физики им. A.M. Прохорова.).

Методом масс-спектрографии и хроматографии определяют такие биомаркеры опухоли легких в вдыхаемом воздухе, как алканы, стиролы, изопрены (Gordon S.M., Szidon J.P., Krotoszynski B.K., Gibbons R.D., O′Neill H.J. Volatile organic compounds in exhaled air from patients with lung cancer // Clin. Chem. - 1985. - №31. - P.1278-1282, а также Diana Poll, Paolo Carbognani, Massimo Corradi, Matteo Goldoni, Olga Acampa, Bruno Balbi, Luca Bianchi, Michele Rusca and Antonio Mutti. Exhaled volatile organic compounds in patients with non-small cell lung cancer: cross sectional and nested short-term follow-up study // J. Respiratory Research. - 2005. - №6 (71). - P.1186-1465).

Однако до настоящего времени не установлено наличие вещества, которое могло бы служить маркером рака вне зависимости от его локализации, степени и формы.

Целью изобретения является упрощение, большая производительность и экономичность способа экспресс-диагностики онкологических заболеваний организма. Преимущество и новизна разработанного способа состоят в возможности использования неинвазивного способа диагностики рака вне зависимости от его локализации, степени и формы. Использование данного метода позволит в режиме скринингового исследования проводить обследование население для выявления онкологической патологии.

В процессе изучения состава выдыхаемого воздуха у больных раком нами установлено, что в нем по хроматографическому пику выявляется вещество, хроматографическая подвижность которого соответствует циклогексил изотиоцианату. При обследовании лиц без признаков онкозаболевания данное соединение не обнаруживалось. Таким образом, в нашем исследовании наличие этого биомаркера в выдыхаемом воздухе свидетельствовало о наличии рака у человека.

Способ осуществляется следующим образом.

Выдыхаемый воздух отбирается в емкости, изготовленные из инертного материала. После отбора фиксированное количество газообразного образца при помощи аспиратора в заданных постоянных условиях прокачивается через трубку, заполненную сорбентом. Таким образом, полученные и концентрированные на сорбенте образцы подвергаются дальнейшему анализу на хромато-масс-спектрометре, снабженном термодесорбером.

Таблица 1 Перечень использованного серийного оборудования № п/п Наименование оборудования 1 Лабораторный двухканальный аспиратор с цифровым секундомером и. 2 Лабораторный двухканальный термодесорбер с обогреваемой газовой линией 3 Лабораторный аналитический двухканальный газожидкостной хроматограф 4 Колонка капиллярная с неподвижной фазой цианопропилфенил полисилаксан 5 Лабораторный аналитический одностадийный квадрупольный масс-спектрометр с электронной ионизацией

ГХ-МС анализ проводился на серийном аналитическом оборудовании, представляющем собой систему из последовательно подключенных стандартным способом приборов газового хроматографа (ГХ) и масс-спектрографа (МС) - ГХ-МС система без внесения конструкционных или иных изменений, и, таким образом, может быть воспроизведен на аналогичном серийном оборудовании.

Подготовка пробы.

Выдыхаемый воздух отбирается в герметичные емкости, изготовленные из инертного материала, объемом 0,5-1,5 литра. После отбора фиксированное количество газообразного образца при помощи аспиратора в заданных постоянных условиях (температура, скорость потока газа) прокачивается через предварительно подготовленную трубку, заполненную сорбентом (активированный уголь, Carboxen1000/CarbosieveS111). После концентрирования образцов трубки с сорбентом подвергаются дальнейшему ГХ-МС анализу с предварительным десорбированием на двухканальном термодесорбере, соединенным с ГХ-МС системой, обогреваемой газовой линией.

Предварительная подготовка сорбционных трубок.

Сорбционные трубки изготовлены из термостойкого стекла, наполнены сорбентом и с двух сторон закрыты стекловолокном. Перед непосредственным отбором образцов проводилось кондиционирование сорбционных трубок, заключающееся в их длительном прогреве при температуре на 30°C выше максимальной температуры хроматографического разделения в течение не менее 2-х часов в токе инертного газа (азота) при фиксированной скорости потока. Перед кондиционированием трубки хранились в герметичных стеклянных емкостях, заполненных инертным газом.

Проведение анализа.

Сорбционная трубка с концентрированным образцом загружалась в термодесорбер. Производился нагрев трубки при постоянном фиксированном токе гелия. Газообразная смесь подводилась к фокусирующей сорбционной трубке, установленной во втором канале термодесорбера. Температура фокусирующей трубки в течение всего процесса концентрирования поддерживалась постоянной. После стадии концентрирования фокусирующая трубка нагревалась, анализируемая газовая смесь по обогреваемой линии поступала в систему ГХ-МС. После подбора параметров хроматографического разделения все образцы были проанализированы в одинаковых условиях. Конечные условия анализа приведены в таблице 2.

Таблица 2 Условия ГХ-МС анализа Газ-носитель Гелий, марка 6.0 Скорость потока в колонке 1.5±0.1 мл/мин Деление потока 1:10 Температура инжектора 220°C Температурная программа термостата колонки ГХ: Начальная температура 50°C, 5 мин Скорость повышения температуры (Т1) 5 град/мин до 150°C Выдержка при Т1 5 мин Скорость повышения температуры (Т2) 20 град/мин до 220°C Выдержка при Т2 10 мин Температура трансферной линии 220°C Температура ионного источника 210°C Тип ионизации Электронная, 70 эВ Интервал регистрируемых масс 45-450 а.е.м. Термодесорбер Начальная температура сорбционной трубки 50°C Продувка гелием 2 мин при 50°C Нагревание сорбционной трубки 220°C в течение 3 мин Нагревание фокусирующей трубки 220°C 3 минуты Температура обогреваемой линии 200°C

По результатам анализа были получены хроматограммы, количество индивидуальных веществ в которых составляло от 10 до 70 индивидуальных соединений. Идентификацию анализируемых смесей проводили по результатам масс-спектрального анализа по положительным ионам при ионизации электронным ударом с энергией ионизирующего излучения 70 эВ. Интерпретацию выполняли соотнесением полученных масс-спектров с данными масс-спектральных библиотек, полученных в аналогичных условиях ионизации с использованием программного обеспечения и баз данных, являющихся неотъемлемыми частями ГХ-МС системы.

Хранение образцов.

Отобранные образцы хранились в инертных емкостях не более недели при комнатной температуре в защищенном от света месте. Трубки с сорбентом, после концентрирования на них образца, хранению не подлежали.

Анализ полученных результатов.

Анализ полученных результатов выявил следующую закономерность: на хроматограммах образцов выдыхаемого воздуха, принадлежащих пациентам с диагнозом рак, присутствовал хроматографический пик, характеризующийся временем удерживания, равным 28.7±0.1 мин (Фигура 1). Согласно полученным масс-спектрам и данным стандартных масс-спектральных библиотек хроматографический пик со временем удерживания, равным 28.7±0.1 мин, соответствует циклогексилизотиоцианату (Cyclohexyl isothiocyanate; Isothiocyanatocyclohexane; Isothiocyanic acid, cyclohexyl ester; Cyclohexyl isothiocyanate, isothiocyanato-; Cyclohexyl-isothiocyanat; Isothiocyanocyclohexane; Cyclohexane isothiocyanate; CAS Registry Number: 1122-82-3).

Клинические испытания проведены у 74 пациентов в возрасте 29-67 лет.

Способ иллюстрируется следующими примерами.

Пример 1.

Пациент И., 39 лет, поступил с предварительным диагнозом рак легкого. При поступлении отмечается затрудненное частое дыхание - ЧД 22 в мин. Больного беспокоят боли в грудной клетке, имеющие постоянный или перемежающийся характер, не связанные с актом дыхания и локализованные на стороне поражения. Рентгенологически выявлен участок уплотнения легочной ткани в виде инфильтрата с нечеткими неровными контурами и неоднородной структуры, которая может быть обусловлена четкой видимостью просветов бронхов на фоне обширного затемнения - симптом ″воздушной бронхограммы″, который является диагностически значимым рентгенологическим признаком пневмониеподобной формы периферического рака легкого.

Больному проведено исследование выдыхаемого воздуха методом ГХ-МС, как указано выше, в результате которого было выявлено наличие хроматографического пика, характеризующего хроматографическую подвижность вещества, соответствующую циклогексил изотиоцианату.

Пример 2.

Пациент Т., 29 лет, с предварительным диагнозом: периферический рак нижней доли левого легкого При поступлении отмечается затрудненное частое дыхание - ЧД 22 в мин. Больной жалуется на боли в грудной клетке, имеющие постоянный характер, не связанные с актом дыхания и локализованные на стороне поражения. Часто беспокоят признаки общего воздействия опухоли на организм: слабость, повышение температуры тела, быстрая утомляемость, снижение трудоспособности.

Была выполнена бронхоскопия. Выявлено уплотнение тканей, связанное или с наличием в зоне осмотра самой опухоли или уплотненной ткани в результате роста близко расположенной опухоли. Была взята биопсия. Диагноз рака легкого подтвержден.

Проведено диагностическое исследование образцов выдыхаемого воздуха ГХ-МС методом. В выдыхаемом воздухе также определен циклогексил изотиоцианат.

Пример 3.

Пациент X., 56 лет, с предварительным диагнозом рак желудка. При поступлении отмечает: слабость, снижение аппетита, потерю веса, ноющую, тянущую, тупую боль эпигастрии, тошноту и рвоту.

Была проведена эзофагогастродуоденоскопия. Выявлено образование в области тела желудка 3×2 см с изъязвленной поверхностью. При проведении МРТ брюшной полости выявлены метастазы в региональные лимфатические узлы. Была взята биопсия, по результатам диагностирован рак тела желудка.

Проведено диагностическое исследование образцов выдыхаемого воздуха методом ГХ-МС. В выдыхаемом воздухе выявлено наличие хроматографического пика, характеризующего хроматографическую подвижность вещества, соответствующую циклогексил изотиоцианату.

Пример 4.

Пациент Л., 58 лет, с предварительным диагнозом рак прямой кишки. При поступлении отмечает: слабость, потерю веса, снижение аппетита, частые, болезненные, учащенные позывы на дефекацию, ощущения присутствия «инородного тела» в прямой кишке, стул с примесью крови.

Было выполнено пальцевое исследование прямой кишки и ирригоскопия, по результатам которой обнаружена опухоль размером 4 см. МРТ исследование органов брюшной полости показало наличие метастазов в региональные лимфатические узлы. Биопсия подтвердила диагноз рак прямой кишки.

Проведено диагностическое исследование ГХ-МС методом. По хроматографической характеристике, соответствующей циклогексил изотиоцианату, выявлено наличие биомаркера рака.

Пример 5.

Пациентка Т., 47 лет, с предварительным диагнозом рак молочной железы. При поступлении жалобы на изменение цвета и формы сосков.

При осмотре определяется безболезненная опухоль в виде плотного узла, симптом морщинистости над ней, подвижные и увеличенные подмышечные лимфатические узлы. При МРТ грудной клетки метастазов не выявлено.

Проведено диагностическое исследование образцов выдыхаемого воздуха на предмет верификации диагноза. В выдыхаемом воздухе определен характерный биомаркер - циклогексил изотиоцианат. В последующем диагноз рака молочной железы был подтвержден, проведена радикальная операция.

Пример 6.

Пациентка М., 69 лет, с предварительным диагнозом рак кожи волосистой части головы. При поступлении жалобы на постоянно кровоточащую рану.

При осмотре полушаровидной формы узел 10 мм в диаметре с гладкой, легко кровоточащей поверхностью, розово-перламутрового цвета, плотной консистенции. В центре узла имеется углубление. Региональные лимфатические узлы увеличены. Биопсия подтвердила диагноз рак кожи.

Для подтверждения диагноза проведено диагностическое исследование образцов выдыхаемого воздуха методом ГХ-МС, выявлен циклогексил изотиоцианат.

Пример 7.

Пациентка К., 59 лет, с предварительным диагнозом рак мочевого пузыря. При поступлении жалобы на учащенное мочеиспускание и изменение цвета мочи.

При цистоскопии выявлена опухоль размером 2 см, с изъязвленной поверхностью. МРТ брюшной полости показало наличие метастазов в региональные лимфатические узлы. Биопсия подтвердила диагноз рак мочевого пузыря.

Проведено диагностическое исследование образцов выдыхаемого воздуха. В выдыхаемом воздухе определен циклогексил изотиоцианат.

Пример 8.

Пациент З., 45 лет, с предварительным диагнозом рак желудка.

При поступлении жалобы на отсутствие аппетита, потерю веса, после еды тяжесть, дискомфорт, быстрое насыщение.

Была проведена эзофагогастродуоденоскопия. Выявлено образование в области тела желудка 1×1 см. При проведении МРТ брюшной полости не выявлены метастазы в региональные лимфатические узлы. Была взята биопсия, по результатам диагностирован рак тела желудка.

23.09.2012 выполнена радикальная операция по удалению опухоли.

09.10.2013 проведено диагностическое исследование образцов выдыхаемого воздуха. В выдыхаемом воздухе не обнаружен циклогексил изотиоцианат. Наблюдение подтвердило отсутствие биомаркера после проведенного радикального лечения.

Пример 9.

Пациент Д., 67 лет, с предварительным диагнозом гастрит.

При поступлении жалобы на отрыжку, изжогу, тошноту.

Была проведена эзофагогастродуоденоскопия. Выявлены эрозивно-язвенные изменения слизистой оболочки стенки желудка, что подтвердило диагноз гастрит.

Проведено контрольное диагностическое исследование образцов выдыхаемого воздуха, циклогексил изотиоцианат не обнаружен.

Заявляемым способом проведена диагностика 52 больных раком разной локализации и 22 пациентов, у которых рака не было. Часть больных раком и группа здоровых (без опухоли) пациентов находились в одном медицинском учреждении и получали одинаковое питание, что максимально исключало влияние посторонних внешних факторов. Испытания определили наличие биомаркера у больных раком и отсутствие у здоровых, что подтверждает достижение назначения изобретения.

Таким образом, предлагаемый нами способ подтвердил свою информативность и поэтому может быть применен в режиме скринингового обследования населения для выявления онкологической патологии.

Похожие патенты RU2538625C1

название год авторы номер документа
Способ диагностики рака легких 2021
  • Гашимова Элина Масуровна
  • Темердашев Азамат Зауалевич
  • Порханов Владимир Алексеевич
  • Поляков Игорь Станиславович
  • Перунов Дмитрий Владимирович
  • Осипова Анна Кареновна
RU2784356C1
СПОСОБ ДИАГНОСТИКИ РАКА С ПРИМЕНЕНИЕМ ВЫДЫХАЕМОГО ВОЗДУХА 2013
  • На Чон-Чан
  • Ким Су Хьюн
RU2639254C2
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ ОНКОЛОГИЧЕСКОГО И НЕ ОНКОЛОГИЧЕСКОГО ГЕНЕЗА 2015
  • Обухова Лариса Михайловна
  • Дерюгина Анна Вячеславовна
  • Макарова Мария Николаевна
  • Ерлыкина Елена Ивановна
  • Терентьев Игорь Георгиевич
  • Горшкова Татьяна Николаевна
  • Бесчастнова Екатерина Сергеевна
RU2593015C1
Способ диагностики I-II стадий серозного рака яичников высокой степени злокачественности по липидному профилю сыворотки крови 2022
  • Павлович Станислав Владиславович
  • Юрова Мария Владимировна
  • Чаговец Виталий Викторович
  • Франкевич Владимир Евгеньевич
  • Стародубцева Наталия Леонидовна
  • Токарева Алиса Олеговна
  • Хабас Григорий Николаевич
  • Сухих Геннадий Тихонович
RU2807396C1
Способ оценки состояния почки пациента на наличие рака 2015
  • Никольский Юрий Евгеньевич
  • Захарова Наталия Борисовна
  • Чехонацкая Марина Леонидовна
  • Понукалин Андрей Николаевич
  • Дурнов Денис Андреевич
RU2607954C1
Способ диагностики рака легкого по анализу выдыхаемого пациентом воздуха на основе анализа биоэлектрических потенциалов обонятельного анализатора крысы 2017
  • Медведев Дмитрий Сергеевич
  • Кирой Валерий Николаевич
  • Ильиных Андрей Сергеевич
  • Шепелев Игорь Евгеньевич
  • Матухно Алексей Евгеньевич
  • Смоликов Алексей Борисович
  • Золотухин Владимир Васильевич
  • Миняева Надежда Руслановна
RU2666873C1
Способ персонализации медицинской помощи пациентам с раком желудка 2019
  • Быков Игорь Игоревич
  • Решетов Игорь Владимирович
  • Немцова Марина Вячеславовна
RU2713907C1
СПОСОБ НЕИНВАЗИВНОЙ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ЗАБОЛЕВАНИЙ ОРГАНОВ ДЫХАТЕЛЬНОЙ СИСТЕМЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2021
  • Чойнзонов Евгений Лхамацыренович
  • Кульбакин Денис Евгеньевич
  • Чернов Владимир Иванович
  • Родионов Евгений Олегович
  • Сачков Виктор Иванович
  • Обходская Елена Владимировна
  • Обходский Артем Викторович
  • Попов Александр Сергеевич
  • Кузнецов Сергей Геннадьевич
RU2760396C1
НАБОР РЕАГЕНТОВ ДЛЯ ВЫЯВЛЕНИЯ МАРКЕРА ЭПИТЕЛИАЛЬНЫХ КАРЦИНОМ 2018
  • Черкасова Жаннета Рашидовна
  • Цуркан Сергей Александрович
  • Кондратьев Вячеслав Борисович
RU2735918C2
СПОСОБ ДИАГНОСТИКИ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ 2013
  • Чумаков Степан Петрович
  • Кравченко Юлия Евгеньевна
  • Гурьянова Ольга Александровна
  • Чумаков Петр Михайлович
  • Фролова Елена Ивановна
RU2547583C2

Иллюстрации к изобретению RU 2 538 625 C1

Реферат патента 2015 года СПОСОБ ДИАГНОСТИКИ РАКА

Группа изобретений относится к медицине, в частности к онкологии, и касается диагностики рака легкого у человека. Способ заключается в исследовании состава выдыхаемого воздуха. При выявлении в нем циклогексил изотиоцианата устанавливают диагноз рака. Второй вариант способа также связан с исследованием состава выдыхаемого воздуха. Для этого используют метод масс-спектрометрии с предварительным газохроматографическим разделением. При выявлении вещества, хроматографический пик которого характеризует хроматографическую подвижность, соответствующую циклогексил изотиоцианату, также устанавливают рак легкого. Предложенные способы обеспечивают достоверную диагностику вне зависимости от локализации, степени и формы рака, что дает возможность использования неинвазивного способа диагностики рака легкого в режиме скринингового обследования. 2 н.п. ф-лы, 2 табл., 9 пр., 1 ил.

Формула изобретения RU 2 538 625 C1

1. Способ диагностики рака у человека, заключающийся в исследовании состава выдыхаемого воздуха и выявлении в нем циклогексил изотиоцианата.

2. Способ диагностики рака у человека, заключающийся в исследовании состава выдыхаемого воздуха методом масс-спектрометрии с предварительным газохроматографическим разделением и выявлении вещества, хроматографический пик которого характеризует хроматографическую подвижность, соответствующую циклогексил изотиоцианату.

Документы, цитированные в отчете о поиске Патент 2015 года RU2538625C1

НУРИСЛАМОВА Т.В
и др
Разработка метода определения акрилонитрила в выдыхаемом воздухе
Вестник Тюменского государственного университета, 2011, N12, с.28-31
СПОСОБ ОБНАРУЖЕНИЯ ОНКОЛОГИЧЕСКОГО ЗАБОЛЕВАНИЯ ЛЕГКИХ 2007
  • Александров Борис Леонтьевич
  • Александрова Эльвира Александровна
  • Родченко Мила Борисовна
RU2363381C1
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ОНКОЛОГИЧЕСКОЙ И ВОСПАЛИТЕЛЬНОЙ ПАТОЛОГИИ ЛЕГКИХ 1993
  • Орел Валерий Эммануилович[Ua]
  • Дзятковская Наталья Николаевна[Ua]
RU2107291C1
RU 95109305 А1, 20.12.1996
СПОСОБ ДИАГНОСТИКИ РАКА ЛЕГКОГО 1993
  • Хышиктуев Баир Сергеевич
  • Хышиктуева Наталья Анатольевна
RU2088926C1
US 20100070191 A1,18.03.2010
US 20120100157 A1, 26.04.2012
US 20130116150 A1,

RU 2 538 625 C1

Авторы

Бахмутов Денис Николаевич

Камкин Никита Николаевич

Ярышев Николай Георгиевич

Лазебник Леонид Борисович

Даты

2015-01-10Публикация

2014-01-20Подача