СПОСОБ ПРИГОТОВЛЕНИЯ МНОГОКОМПОНЕНТНЫХ УЛЬТРАДИСПЕРСНЫХ СУСПЕНЗИОННЫХ И ЭМУЛЬСИОННЫХ БИОТОПЛИВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2015 года по МПК C10L1/00 B02C19/18 F15B21/12 

Описание патента на изобретение RU2539978C1

Изобретение относится к технологиям приготовления эмульсий и суспензий на основе многокомпонентных смесей разнородных по своей природе веществ, в частности минерального и растительного происхождения, для использования в качестве топлив смесевого типа, а также в других областях, где требуются гомогенные композиции различных материалов текучей консистенции. В частности, оно может быть применено для получения новых видов композитных биотоплив на основе возобновляемого органического сырья (например, в виде отходов животноводства, биомассы микроводорослей и т.п.) и низкосортных нефтепродуктов с целью более полного сгорания последних и, соответственно, существенного снижения вредных выбросов в окружающую среду.

В настоящее время для приготовления многокомпонентных гомогенных смесей широко используются методы обработки смесей с помощью устройств гидродинамического или(и) ультразвукового действия, реализующих условия, при которых возникает кавитация, способствующая интенсификации массообменных процессов, существенному увеличению дисперсности смешиваемых сред и даже протеканию некоторых химических реакций, обеспечивающих снижение средней молекулярной массы конечных продуктов обработки.

Так, известны способы и устройства, в которых осуществляется гидродинамическая кавитационная обработка смесей (патенты: а.с. СССР 497058, кл. B06B 1/15, а.с. СССР 637138, кл. B01 3/08, 06.07.77, РФ 2221633, 2075619, 2115176). К существенным недостаткам указанных устройств следует отнести относительно низкую интенсивность массообменных процессов, что обусловлено недостаточно высокой средней частотой колебаний, возникающих в обрабатываемой жидкой среде. В результате продукт обработки не обладает требуемой степенью дисперсности, что приводит к расслоению эмульсии по истечении непродолжительного срока хранения.

Наиболее близким по технической сути и достигаемому результату является гидродинамический излучатель для ультразвуковой обработки жидкости, который содержит герметизированную емкость, размещенный в ней ультразвуковой вибратор, подсоединенный к выходу генератора ультразвуковых колебаний, генератор ультразвуковых колебаний дополнительно снабжен амплитудно-модулирующим устройством с автоподстройкой резонансной частоты (RU 94027025 A1, МПК B02C 19/18. Заявка: 94027025/06, 18.07.1994. Публ.: 20.05.1999).

К недостаткам известного устройства относится то, что в нем не предусмотрена подстройка частоты генератора при уходе резонансной частоты вибратора при нагреве в процессе обработки, который может составлять несколько десятков °C, особенно в средах с высокой вязкостью. В результате чего при нагреве требуется существенно повышать мощность генератора, чтобы обеспечить ту же производительность устройства в ущерб энергетической экономичности всего устройства. Кроме того, при использовании компонентов с размером частиц 5 мм и более приходится проводить большое количество циклов обработки в проточном режиме, чтобы получить требуемую степень дисперсности суспензии-эмульсии, из-за чего снижается производительность устройства.

Задачей изобретения является повышение производительности и снижение энергопотребления процесса приготовления ультрадисперсных эмульсий и суспензий на основе многокомпонентных смесей в твердом и жидком состоянии, в том числе жидкостей с высокой вязкостью.

Использование предлагаемого изобретения обеспечивает получение стабильных во времени водосодержащих композитных биотоплив на основе органических компонентов минерального и биологического происхождения при сокращении времени обработки и энергетических затрат.

Технический результат достигается тем, что в предлагаемом способе приготовления многокомпонентных ультрадисперсных суспензионных и эмульсионных биотоплив обработку многокомпонентной среды, являющейся композицией жидких или жидких и твердых органических веществ минерального и(или) биологического происхождения, производят в циркулирующем потоке путем гидродинамического и ультразвукового кавитационного воздействия в циклически повторяющейся последовательности, состоящей из двух фаз, при этом в фазе гидродинамического воздействия производят механическую деструкцию жидких и(или) твердых частиц компонентов до размеров, не превышающих величину прядка 1 мм, а в фазе ультразвукового воздействия осуществляют ультрадисперсную деструкцию жидких и(или) твердых частиц компонентов, произведенных в ходе первой фазы деструкции, при этом частоту акустического ультразвукового поля fT изменяют в зависимости от температуры обрабатываемой многокомпонентной среды в соответствии с выражением:

fT=fN/(1+αΔT),

где fN - резонансная частота ультразвукового излучателя при нормальной температуре TN=25°C, ΔT - разность между фактическими значениями температуры и TN, α - коэффициент теплового расширения материала, из которого изготовлен ультразвуковой излучатель, а циклическую двухфазную последовательность обработки многокомпонентной среды продолжают до тех пор, пока в ней остается более 5% взвешенных твердых или/и жидких частиц размером более 25 мкм.

Технический результат достигается также тем, что установка для приготовления многокомпонентных ультрадисперсных суспензионных и эмульсионных биотоплив содержит рабочую емкость, гидродинамическое кавитационное устройство, соединительные трубопроводы, насос, ультразвуковое кавитационное устройство, состоящее из корпуса со встроенным в него термодатчиком, излучателя и магнитострикционного преобразователя, задающего генератора, широкополосный усилитель мощности, блок подстройки частоты задающего генератора, сигнальный кабель термодатчика, кабель цепи управления частотой задающего генератора и два соединительных кабеля, один из которых присоединен к выходу задающего генератора и ко входу широкополосного усилителя мощности, а второй - к выходу широкополосного усилителя мощности и ко входу магнитострикционного преобразователя; один из трех соединительных трубопроводов, с врезанным в него насосом, соединяет нижнюю часть рабочей емкости со входом гидродинамического кавитационного устройства, причем насос обращен своим входом в сторону рабочей емкости, а выходом - в сторону гидродинамического кавитационного устройства, второй соединительный трубопровод соединяет выход гидродинамического кавитационного устройства с верхней частью корпуса ультразвукового кавитационного устройства, а третий соединительный трубопровод соединяет нижнюю часть корпуса ультразвукового кавитационного устройства с верхней частью рабочей емкости, сигнальный кабель термодатчика присоединен к термодатчику и ко входу блока подстройки частоты задающего генератора, кабель цепи управления частотой задающего генератора соединяет выход блока подстройки частоты задающего генератора со входом задающего генератора.

Сущность изобретения поясняется чертежом, на котором представлена общая схема установки для приготовления многокомпонентных ультрадисперсных суспензионных и эмульсионных биотоплив, с помощью которой может быть реализован предлагаемый способ.

Установка для приготовления многокомпонентных ультрадисперсных суспензионных и эмульсионных биотоплив содержит рабочую емкость 1, гидродинамическое кавитационное устройство 6, ультразвуковое кавитационное устройство, состоящее из корпуса 7 со встроенным в него термодатчиком 8, излучателя 9 и магнитострикционного преобразователя 10, три соединительных трубопровода, один из которых 14 с врезанным в него насосом 15 соединяет нижнюю часть рабочей емкости 1 со входом гидродинамического кавитационного устройства. Насос установлен таким образом, что его вход обращен в сторону рабочей емкости, а выход - в сторону гидродинамического кавитационного устройства 6. Второй соединительный трубопровод 16 соединяет выход гидродинамического кавитационного устройства с верхней частью корпуса 7 ультразвукового кавитационного устройства, а третий соединительный трубопровод 17 соединяет нижнюю часть корпуса ультразвукового кавитационного устройства с верхней частью рабочей емкости. В состав установки также входят: задающий генератор 12, широкополосный усилитель мощности 11, блок подстройки частоты задающего генератора 13 и два соединительных кабеля, один из которых 18 присоединен к выходу задающего генератора и ко входу широкополосного усилителя мощности, а второй 21 - к выходу широкополосного усилителя мощности и ко входу магнитострикционного преобразователя. Термодатчик 8 присоединен ко входу блока 13 подстройки частоты задающего генератора посредством сигнального кабеля 19. Выход блока подстройки частоты задающего генератора соединен со входом задающего генератора кабелем 20 цепи управления частотой задающего генератора.

Работу установки можно пояснить на примере приготовления композитного котельного биотоплива на основе возобновляемой биомассы - органического происхождения (водоросли) и стандартного минерального топлива (мазут).

В исходном состоянии вентили 3 и 5 патрубков загрузки компонентов и выгрузки биотоплива закрыты. Перед началом приготовления композитного котельного биотоплива открывают вентиль 3 и через патрубок загрузки 2 в рабочую емкость 1 загружают исходные компоненты биотоплива в соотношениях, указанных в приведенной ниже таблице:

Соотношение исходных компонентов композитного биотоплива Состав 1 Компонент Массовая доля, % Мазут 50 Водоросль (Chlorella) 30 (ACM*) Вода 20 * Абсолютно сухая масса

После этого закрывают вентиль 3 и включают насос 15, с помощью которого прокачивают образовавшуюся многокомпонентную среду по соединительному трубопроводу 14 в гидродинамическое кавитационное устройство 6, в котором в результате низкочастотного кавитационного воздействия осуществляют механическую деструкцию крупных жидких и твердых частиц компонентов линейного размера более 5 мм до линейного размера менее 1 мм.

Из гидродинамического кавитационного устройства многокомпонентную среду направляют по соединительному трубопроводу 16 внутрь корпуса 7 ультразвукового кавитационного устройства, где под действием ультразвуковых волн, создаваемых излучателем 9, колеблющимся с резонансной частотой в диапазоне 20-60 кГц, происходит дальнейшая деструкция частиц компонентов на более мелкие фрагменты, в результате чего обрабатываемая многокомпонентная среда обретает форму мелкодисперсной суспензии-эмульсии, которую возвращают в рабочую емкость по соединительному трубопроводу 17. Таким образом осуществляют многократную циркуляцию суспензии-эмульсии с помощью насоса посредством соединительных трубопроводов из рабочей емкости через гидродинамическое и ультразвуковое кавитационные устройства обратно в рабочую емкость. При этом с помощью термодатчика 8 измеряют температуру многокомпонентной среды внутри корпуса ультразвукового кавитационного устройства. Сигнал термодатчика, пропорциональный фактической температуре обрабатываемой многокомпонентной среды, поступает по сигнальному кабелю 19 в блок подстройки частоты задающего генератора 13. Блок подстройки вырабатывает сигнал управления, который по кабелю цепи управления 20 передается на задающий генератор 12 и изменяет его частоту таким образом, чтобы она была максимально близкой к резонансной частоте излучателя при данной температуре.

Например, если резонансная частота излучателя, изготовленного из стали нержавеющей ферритной, при нормальной температуре 25°C (при которой производилась его калибровка) равна 22 кГц, а фактическая температура обрабатываемой многокомпонентной среды, измеряемая термодатчиком, в процессе циклической обработки поднялась до 95°C, то на задающий генератор подается управляющий сигнал, соответствующий частоте fT=fN/(1+αΔT)=22/(1+9,9×10-6×70)=21,985 кГц (коэффициент теплового расширения материала излучателя принят равным 9,9×10-6). Для титанового излучателя (α=8,6×10-6) частота задающего генератора для данной температуры будет составлять 21,987 кГц.

С задающего генератора сигнал частоты подается по соединительному кабелю 21 на широкополосный усилитель мощности 11, а оттуда усиленный электрический сигнал поступает на магнитострикционный преобразователь 10 по соединительному кабелю 18. В свою очередь, магнитострикционный преобразователь преобразует электрический сигнал в механические колебания излучателя 9.

Циклическую двухфазную обработку многокомпонентной среды продолжают до тех пор, пока в ней остается более 5% взвешенных твердых или/и жидких частиц размером более 25 мкм. После этого открывают вентиль 5 и через патрубок 4 выгружают готовое композитное биотопливо из рабочей емкости 1.

Похожие патенты RU2539978C1

название год авторы номер документа
СПОСОБ ПРИГОТОВЛЕНИЯ КОМПОЗИТНОГО МИНЕРАЛЬНО-ОРГАНИЧЕСКОГО БИОТОПЛИВА ТРЕТЬЕГО ПОКОЛЕНИЯ 2015
  • Чирков Владимир Григорьевич
  • Кожевников Юрий Александрович
  • Щекочихин Юрий Михайлович
  • Чирков Сергей Владимирович
  • Кожевников Дмитрий Александрович
  • Чижиков Александр Григорьевич
RU2600950C1
СПОСОБ АКУСТИЧЕСКОЙ ОБРАБОТКИ МНОГОФАЗНОГО ПРОДУКТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Аникин Владимир Семенович
  • Аникин Владимир Владимирович
RU2457896C1
СПОСОБ КОМБИНИРОВАННОЙ ОБРАБОТКИ НЕФТЕСОДЕРЖАЩЕГО СЫРЬЯ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Каськов Сергей Иосифович
  • Бахтин Борис Иванович
  • Десятов Андрей Викторович
  • Кубышкин Александр Петрович
RU2408656C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОКОМПОНЕНТНЫХ СМЕСЕВЫХ ТОПЛИВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Стребков Дмитрий Семенович
  • Борткевич Сергей Вячеславович
  • Щекочихин Юрий Михайлович
  • Болдырев Алексей Михайлович
RU2365404C1
СПОСОБ И УСТАНОВКА ПЛАЗМОТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ УГЛЕРОДСОДЕРЖАЩИХ ПРОМЫШЛЕННЫХ И СЕЛЬСКОХОЗЯЙСТВЕННЫХ ОТХОДОВ ДЛЯ ПОЛУЧЕНИЯ ПЛАЗМОГАЗА 2011
  • Стребков Дмитрий Семенович
  • Столбов Николай Васильевич
  • Прокудин Юрий Александрович
  • Емельянцев Сергей Викторович
  • Зиновьев Алексей Владимирович
  • Росс Марина Юрьевна
  • Чирков Владимир Григорьевич
  • Чиркова Татьяна Григорьевна
  • Щекочихин Юрий Михайлович
RU2451715C1
ГИДРОДИНАМИЧЕСКИЙ КАВИТАЦИОННЫЙ И УЛЬТРАЗВУКОВОЙ ПРЕОБРАЗОВАТЕЛЬ ТОПЛИВА 1998
  • Штагер В.П.
  • Дьяков М.В.
  • Кривец Н.М.
  • Бабухин А.Г.
  • Суханов Г.Г.
  • Берестнев К.Н.
  • Дьяков И.М.
RU2131087C1
УСТРОЙСТВО ДЛЯ СОНОПЛАЗМЕННОЙ СТИМУЛЯЦИИ ФИЗИКО-ХИМИЧЕСКИХ И ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ В ЖИДКОЙ СРЕДЕ 2009
  • Абрамов Владимир Олегович
  • Баязитов Вадим Муратович
  • Золеззи Гарретон Альфредо Алехандро
RU2393028C1
СПОСОБ РАСПИЛОВКИ ДРЕВЕСИНЫ ЛЕЗВИЙНЫМ ИНСТРУМЕНТОМ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 1997
  • Гордеев Владимир Федорович
  • Гляделов Виктор Кононович
  • Тепляков Валерий Витальевич
  • Климашов Юрий Анатольевич
RU2113347C1
СПОСОБ ОЧИСТКИ ВОДНОЙ СРЕДЫ 2011
  • Гаврилин Павел Андреевич
  • Шибуня Виктор Степанович
  • Пучков Владимир Васильевич
  • Саруханов Рубен Григорьевич
RU2467956C1
ИНСТРУМЕНТАЛЬНАЯ ГОЛОВКА ДЛЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ МАТЕРИАЛОВ 1996
  • Яшин Сергей Васильевич
  • Царев Валерий Николаевич
RU2111842C1

Иллюстрации к изобретению RU 2 539 978 C1

Реферат патента 2015 года СПОСОБ ПРИГОТОВЛЕНИЯ МНОГОКОМПОНЕНТНЫХ УЛЬТРАДИСПЕРСНЫХ СУСПЕНЗИОННЫХ И ЭМУЛЬСИОННЫХ БИОТОПЛИВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к технологиям приготовления эмульсий и суспензий на основе многокомпонентных смесей разнородных по своей природе веществ, в частности минерального и растительного происхождения, для использования в качестве топлив смесевого типа, а также в других областях, где требуются гомогенные композиции различных материалов текучей консистенции. Технический результат достигается тем, что в предлагаемом способе обработку производят в циркулирующем потоке путем гидродинамического и ультразвукового кавитационного воздействия в циклически повторяющейся последовательности, состоящей из двух фаз, при этом в фазе гидродинамического воздействия производят механическую деструкцию жидких и(или) твердых частиц компонентов до размеров, не превышающих величину прядка 1 мм, а в фазе ультразвукового воздействия осуществляют ультрадисперсную деструкцию жидких и(или) твердых частиц компонентов, произведенных в ходе первой фазы деструкции, при этом частоту акустического ультразвукового поля fT изменяют в зависимости от температуры обрабатываемой многокомпонентной среды в соответствии с выражением: fT=fN/(1+αΔT), где fN - резонансная частота ультразвукового излучателя при нормальной температуре TN=25°C, ΔT - разность между фактическими значениями температуры и TN, α - коэффициент теплового расширения материала, из которого изготовлен ультразвуковой излучатель, а циклическую двухфазную последовательность обработки многокомпонентной среды продолжают до тех пор, пока в ней остается более 5% взвешенных твердых или/и жидких частиц размером более 25 мкм. В изобретении описывается также установка для осуществления указанного способа. 2 н.п. ф-лы, 1 ил., 1 табл.

Формула изобретения RU 2 539 978 C1

1. Способ приготовления многокомпонентных ультрадисперсных суспензионных и эмульсионных биотоплив, предусматривающий обработку многокомпонентной среды, являющейся композицией жидких или жидких и твердых органических веществ минерального и(или) биологического происхождения, в циркулирующем потоке путем гидродинамического и ультразвукового кавитационного воздействия, отличающийся тем, что обработку производят в циклически повторяющейся последовательности, состоящей из двух фаз, при этом в фазе гидродинамического воздействия производят механическую деструкцию жидких и(или) твердых частиц компонентов до размеров, не превышающих 1 мм, а в фазе ультразвукового воздействия осуществляют ультрадисперсную деструкцию жидких и(или) твердых частиц компонентов, произведенных в ходе первой фазы деструкции, при этом частоту акустического ультразвукового поля fT изменяют в зависимости от температуры обрабатываемой многокомпонентной среды в соответствии с выражением:
fT=fN/(1+αΔT),
где fN - резонансная частота ультразвукового излучателя при нормальной температуре TN=25°C, ΔT - разность между фактическими значениями температуры и TN, α - коэффициент теплового расширения материала, из которого изготовлен ультразвуковой излучатель, а циклическую двухфазную последовательность обработки многокомпонентной среды продолжают до тех пор, пока в ней остается более 5% взвешенных твердых или/и жидких частиц размером более 25 мкм.

2. Установка для приготовления многокомпонентных ультрадисперсных суспензионных и эмульсионных биотоплив, содержащая рабочую емкость с патрубками загрузки компонентов и выгрузки биотоплива с врезанными в них вентилями, гидродинамическое кавитационное устройство, соединительные трубопроводы и насос, отличающееся тем, что также включает в себя ультразвуковое кавитационное устройство, состоящее из корпуса со встроенным в него термодатчиком, излучателя и магнитострикционного преобразователя, задающий генератор, широкополосный усилитель мощности, блок подстройки частоты задающего генератора, сигнальный кабель термодатчика, кабель цепи управления частотой задающего генератора и два соединительных кабеля, один из которых присоединен к выходу задающего генератора и ко входу широкополосного усилителя мощности, а второй - к выходу широкополосного усилителя мощности и ко входу магнитострикционного преобразователя; один из трех соединительных трубопроводов с врезанным в него насосом соединяет нижнюю часть рабочей емкости со входом гидродинамического кавитационного устройства, причем насос обращен своим входом в сторону рабочей емкости, а выходом - в сторону гидродинамического кавитационного устройства, второй соединительный трубопровод соединяет выход гидродинамического кавитационного устройства с верхней частью корпуса ультразвукового кавитационного устройства, а третий соединительный трубопровод соединяет нижнюю часть корпуса ультразвукового кавитационного устройства с верхней частью рабочей емкости, сигнальный кабель термодатчика присоединен к термодатчику и ко входу блока подстройки частоты задающего генератора, кабель цепи управления частотой задающего генератора соединяет выход блока подстройки частоты задающего генератора со входом задающего генератора.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539978C1

Способ обработки жидких сред 1973
  • Кортнев Андрей Васильевич
  • Колтынюк Эдуард Борисович
  • Муравьев Виталий Павлович
  • Назаренко Аскольд Федорович
  • Самойленко Виталий Васильевич
SU497058A1
Способ и приспособление для изготовления основы вяленой обуви 1933
  • Ошурков И.М.
SU40574A1
KR 2009118800 A 18.11.2009
US 6347507 B1 19.02.2002
Приспособление для подъема и опускания цилиндрических затворов в гидротехнических сооружениях 1928
  • Дмитриев В.В.
SU13523A1
RU 2063562 C1 10.07.1996

RU 2 539 978 C1

Авторы

Стребков Дмитрий Семенович

Щекочихин Юрий Михайлович

Чирков Владимир Григорьевич

Кожевников Юрий Александрович

Даты

2015-01-27Публикация

2013-11-07Подача