FIELD: physics, atomic power.
SUBSTANCE: present invention relates to a method of conducting nuclear reactions. The disclosed method is characterised by that channelled nuclear particles, ions or radiation are focused at a certain point of a channel in the crystal lattice of an interstitial phase, nanotubes or beyond the boundaries thereof. In interstitial phases or selected endohedral structures, the interstitial atoms also occupy said regions as a result of adsorption processes at the channel output, diffusion on the channels or pre-implantation into channels. In case of pre-implantation into channels, the implanted nucleus must have a certain energy E1, sufficient for the nucleus, after stopping, to reach a point where the next nucleus with a higher energy passes based on the focusing conditions. The next nucleus, entering the same channel with energy E2, which is higher than the energy E1 by a value greater than the nuclear reaction threshold, must reach a point where the first nucleus stopped with energy which is equal to or greater than the nuclear reaction threshold. The target device for a neutron tube used in the method includes a cooled target mounted in a housing (1), having a layered structure, in which a lithium-6 deuteride layer (3) is placed on a cooled monocrystalline substrate (2) under a thin layer of monocrystalline palladium (4); the target is bombarded with tritium nuclei.
EFFECT: creating conditions for increasing efficiency of nuclear reactions.
2 tbl, 7 dwg
Authors
Dates
2015-02-10—Published
2012-07-09—Filed