СПОСОБ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО ПИГМЕНТА Российский патент 2015 года по МПК C09C1/00 C09C1/02 C09C3/04 B02C19/18 

Описание патента на изобретение RU2541069C2

Изобретение относится к получению антикоррозионных неорганических пигментов, которые могут быть использованы для приготовления консервационных смазок. Известно получение железооксидных неорганических пигментов из промышленных отходов при прокалке железосодержащих осадков электрохимической очистки сточных вод гальванического производства [А.с. СССР N 1370124, кл. С09С 1/24, 1988]. Недостатком данного способа получения пигментов является окисление соединений трехвалентного хрома до хроматов, что значительно сужает возможные области применения таких пигментов. Кроме того, электрокоагуляционная очистка гальваношламов внедрена лишь на небольшом числе промышленных производств (8-12% от общего количества гальванических производств), тогда как на большинстве заводов используется реагентная очистка гальваностоков осаждением гидроксидом кальция.

Наиболее близким к предлагаемому способу получения антикоррозионного пигмента является способ получения пигмента из составляющих пигмент кислородсодержащих соединений металлов, включающий термообработку данной смеси и измельчение термообработанного продукта [Патент РФ N 2055086, кл. С09С 1/28, С04В 33/14, 1996]. Недостатком данного способа является невысокая антикоррозионная стойкость, высокая укрывистость и низкая стабильность получаемых пигментов, представляющих смесь оксидов металлов.

Задачей изобретения является получение дешевых высокостойких антикоррозионных пигментов ферритной структуры, получаемых из гальваношламов, и расширение области их применения.

Данная задача решается созданием антикоррозионного пигмента, обладающего высокими антикоррозионными свойствами, низкой степенью укрывистости и высокой стабильностью.

Поставленная задача решается тем, что предлагается способ получения антикоррозионного пигмента из составляющих кислородсодержащих соединений металлов, включающий термообработку указанной смеси и измельчение термообработанного продукта. В качестве указанной смеси используют смесь суспензий шламов электрохимической очистки сточных вод гальванического производства и содержащего гидроксид кальция отхода ванн нейтрализации машиностроительных производств, термообработку проводят при 900°C в течение часа, а процесс измельчения пигмента ведут в электромагнитных измельчителях с использованием энергии переменного электромагнитного поля и рабочих элементов - сфер из гексаферрита бария, движущихся под воздействием этого поля, при этом измельчение проводят до размера частиц 3-4 мкм.

Процесс получения антикоррозионного пигмента по предлагаемой технологии заключается в следующем: суспензию гальваношлама (Табл. 1) и суспензию пигментного компонента-ингибитора (КИ) тщательно перемешивают в таком количестве, чтобы соблюдалось соотношение 1:1 по ионам железа и кальция.

Полученную суспензию фильтруют, а осадок сушат в сушильном шкафу. Смесь механически перетирают и помещают в керамические тигли. Далее тигли с шихтой помещают в предварительно нагретую муфельную печь, где прокаливают при 900°C в течение часа. После прокаливания тигли переносят в эксикатор для охлаждения. Измельчение полученного пигмента проводят в электромагнитных аппаратах-измельчителях (ЭМИ) до размера частиц 3-4 мкм. Полученный после измельчения в ЭМИ антикоррозионный пигмент обладает высокой дисперсностью, что в свою очередь в дальнейшем позволит улучшить качественные показатели данного материала, а именно снизить укрывистость, увеличить стабильность, термостойкость, обеспечивающие широкий диапазон областей применения получаемого антикоррозионного пигмента.

Пример 1. В суспензию из шламов электрохимической очистки сточных вод гальванического производства (ГШ) дополнительно вводят суспензию пигментного компонента-ингибитора (КИ) - отхода после ванн нейтрализации машиностроительных производств, содержащего в своем составе в основном гидроксид кальция Са(ОН)2, в соотношении ГШ:КИ - 1:1 (по оксидам железа и кальция) с учетом кальция, содержащегося в ГШ, тщательно перемешивают Полученную суспензию фильтруют, а осадок сушат в сушильном шкафу. Смесь механически перетирают и помещают в керамические тигли. Далее тигли с шихтой помещают в предварительно нагретую муфельную печь, где прокаливают при 900°C в течение часа. После прокаливания тигли переносят в эксикатор для охлаждения. Измельчение полученного пигмента до размера частиц не более 10 мкм проводят механически.

Пример 2. В суспензию из шламов электрохимической очистки сточных вод гальванического производства (ГШ) дополнительно вводят суспензию пигментного компонента-ингибитора (КИ) - отхода после ванн нейтрализации машиностроительных производств, содержащего в своем составе в основном гидроксид кальция Са(ОН)2, в соотношении ГШ:КИ - 1:1 (по оксидам железа и кальция) с учетом кальция, содержащегося в ГШ, тщательно перемешивают Полученную суспензию фильтруют, а осадок сушат в сушильном шкафу. Смесь механически перетирают и помещают в керамические тигли. Далее тигли с шихтой помещают в предварительно нагретую муфельную печь, где прокаливают при 900°C в течение часа. После прокаливания тигли переносят в эксикатор для охлаждения. Измельчение полученного пигмента до размера частиц не более 3-4 мкм проводят в электромагнитных аппаратах-измельчителях (ЭМИ), работающих при частоте переменного тока 50 Гц и содержащих в качестве мелющих тел сферы гексаферрита бария, которые позволяют достигнуть интенсивного перемешивания компонентов с образованием более мелких частиц антикоррозионного пигмента. Результаты исследований представлены в таблице 2

Таким образом, заявляемое техническое решение позволяет разработать способ получения дешевых антикоррозиционных пигментов, получаемых из суспензии гальваношламов (ГШ) и суспензии пигментного компонента-ингибитора (КИ) с использованием электромагнитных измельчителей для достижения большей дисперсности продукта, и расширить область их применения по сравнению с известными решениями.

Похожие патенты RU2541069C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО ПИГМЕНТА 2011
  • Филиппова Ольга Павловна
  • Яманина Нина Сергеевна
  • Головников Антон Валерьевич
  • Белякова Екатерина Александровна
  • Барламов Олег Николаевич
  • Павлова Надежда Валентиновна
RU2471835C1
ПИГМЕНТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1997
  • Тимошин В.Н.
  • Селин В.В.
  • Милехин Ю.М.
  • Кривошеев Н.А.
  • Яковлев С.И.
RU2118973C1
СПОСОБ ПОЛУЧЕНИЯ ПЛАСТИЧНОЙ СМАЗКИ 2013
  • Филиппова Ольга Павловна
  • Макаров Владимир Михайлович
  • Яманина Нина Сергеевна
  • Калаева Сахиба Зияддин Кзы
RU2534992C1
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗОКАЛЬЦИЕВОГО ПИГМЕНТА 2010
  • Мустафин Ахат Газизьянович
  • Сабитова Зиля Шарифигулловна
  • Ковтуненко Сергей Викторович
  • Шарипов Тагир Вильданович
RU2451706C1
СПОСОБ ПЕРЕРАБОТКИ ШЛАМОВ ГАЛЬВАНИЧЕСКИХ ПРОИЗВОДСТВ 2009
  • Рубанов Юрий Константинович
  • Слюсарь Анатолий Алексеевич
  • Токач Юлия Егоровна
  • Нечаев Александр Федорович
  • Адонина Татьяна Витальевна
RU2404270C1
Способ получения силикатной пластичной смазки 2021
  • Филиппова Ольга Павловна
  • Сергеев Егор Сергеевич
RU2776953C1
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ КОРИЧНЕВОГО ЖЕЛЕЗООКСИДНОГО ПИГМЕНТА 1997
  • Тимошин В.Н.
  • Селин В.В.
  • Милехин Ю.М.
  • Кривошеев Н.А.
  • Яковлев С.И.
RU2118972C1
Способ комплексной переработки сточных вод гальванических производств 2018
  • Волков Дмитрий Анатольевич
  • Чириков Александр Юрьевич
  • Юдаков Александр Алексеевич
  • Буравлев Игорь Юрьевич
RU2674206C1
Материал для изготовления магнитотвердых ферритов 1989
  • Будиловский Юлий Яковлевич
  • Степанчикова Ирина Германовна
  • Макаров Сергей Вадимович
  • Зайцев Валентин Алексеевич
  • Власов Анатолий Сергеевич
  • Вербавичюс Эургениус Броневич
  • Пташекас Мариус Рувинович
SU1671408A1
Композиция для получения магнитотвердых ферритов и способ их получения 2019
  • Степанчиков Павел Михайлович
  • Нечистяк Наталья Валерьевна
RU2705155C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО ПИГМЕНТА

Изобретение может быть использовано в производстве консервационных смазок. Для получения антикоррозионного пигмента проводят термообработку при 900°С в течение 1 часа смеси суспензий шламов электрохимической очистки сточных вод гальванического производства и содержащего гидроксид кальция отхода ванн нейтрализации машиностроительных производств. Измельчение термообработанного продукта ведут в электромагнитных измельчителях с использованием энергии переменного электромагнитного поля и рабочих элементов - сфер из гексаферрита бария, движущихся под воздействием этого поля. Измельчение проводят до размера частиц 3-4 мкм. Изобретение позволяет повысить коррозионную стойкость пигмента, снизить укрывистость. 2 табл., 2 пр.

Формула изобретения RU 2 541 069 C2

Способ получения антикоррозионного пигмента из смеси кислородсодержащих соединений металлов, включающий термообработку указанной смеси и измельчение термообработанного продукта, отличающийся тем, что в качестве указанной смеси используют смесь суспензий шламов электрохимической очистки сточных вод гальванического производства и содержащего гидроксид кальция отхода ванн нейтрализации машиностроительных производств, термообработку проводят при 900°С в течение часа, а процесс измельчения пигмента ведут в электромагнитных измельчителях с использованием энергии переменного электромагнитного поля и рабочих элементов - сфер из гексаферрита бария, движущихся под воздействием этого поля, при этом измельчение проводят до размера частиц 3-4 мкм.

Документы, цитированные в отчете о поиске Патент 2015 года RU2541069C2

RU 2055086 C1, 27.02.1996;
СПОСОБ ПОЛУЧЕНИЯ ОСНОВЫ КОМПОЗИЦИОННОГО АНТИКОРРОЗИОННОГО ЛАКОКРАСОЧНОГО МАТЕРИАЛА ПО РЖАВЧИНЕ И СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО АНТИКОРРОЗИОННОГО ЛАКОКРАСОЧНОГО МАТЕРИАЛА ПО РЖАВЧИНЕ С ИСПОЛЬЗОВАНИЕМ ОСНОВЫ 2009
  • Фрумович Вениамин
  • Левиева Малко Владиславовна
RU2406733C1
СПОСОБ ПОЛУЧЕНИЯ ПИГМЕНТОВ 1997
  • Дугуев С.В.
  • Иванова В.Б.
RU2114885C1
US 7220297 B2, 22.05.2007
БЕЛЕНЬКИЙ Е.Ф., РИСКИН И.В., Химия и технология пигментов, Химия, Ленинград, 1974, с
Способ крашения тканей 1922
  • Костин И.Д.
SU62A1

RU 2 541 069 C2

Авторы

Филиппова Ольга Павловна

Яманина Нина Сергеевна

Головников Антон Валерьевич

Белякова Екатерина Александровна

Барламов Олег Николаевич

Павлова Надежда Валентиновна

Даты

2015-02-10Публикация

2011-06-01Подача