ТВЕРДОТОПЛИВНАЯ МЕТАЛЛИЗИРОВАННАЯ КОМПОЗИЦИЯ Российский патент 2015 года по МПК C06B31/28 B82Y30/00 C06B45/02 C06D5/06 

Описание патента на изобретение RU2541332C1

Изобретение относится к высокоэнергетическим конденсированным системам, а именно к твердому топливу, которое может быть использовано в качестве источника рабочего тела в энергетических установках и газогенераторах различного назначения.

Известно твердое топливо на основе нитрата аммония (НА) [Патент US №6176950], основным недостатком которого является низкая скорость горения и плохая воспламеняемость (большое время задержки воспламенения и высокое значение предельного давления устойчивого воспламенения и горения топлива), обусловленные высоким содержанием НА (88-93 масс.%) и наличием парафина. Топливо характеризуется низкой стабильностью физико-химических свойств, связанной с использованием нефазостабилизированного НА [Бабук В.А., Глебов А.А., Долотказин И.Н. Топлива на основе нитрата аммония для ракетно-космических комплексов. Механизм горения, проблемы использования и направления совершенствования // Внутрикамерные процессы, горение и газовая динамика дисперсных систем: Тр. IV Межд. школы-семинара. - С.-Пб.: БалтГТУ, 2004. - С.17-20]. Кроме того, представленная компоновка топлива характеризуется низким значением удельного импульса, в том числе из-за отсутствия металлического горючего в ее составе.

Известна неазидная композиция на основе нитрата аммония [Патент US №6017404] на основе фазостабилизированного нитратом калия НА. Данная добавка обеспечивает фазовую стабильность (отсутствие полиморфных переходов), однако такой НА не выдерживает циклических температурных испытаний и полиморфные переходы появляются вновь [Попок В.Н. К решению задачи фазовой стабилизации нитрата аммония // Электронный журнал «Исследовано в России», 159, с.1830-1846, 2007. http://zhurnal.ape.relarn.ru/articles/2007/159.pdf], что приводит к низкой стабильности физико-химических свойств всей композиции. Кроме того, топливо характеризуется низкой скоростью горения, плохой воспламеняемостью и низким значением удельного импульса.

Известна металлизированная твердотопливная композиция [Патент RU №2363691, опубл. 10.08.2009 г.], содержащая нитрат аммония, ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол, микро- и нанопорошки алюминия.

Недостатками композиции являются большая масса шлаков, характерная для всех нитратных составов на основе инертных ГСВ, низкая скорость горения, плохая воспламеняемость, низкий удельный импульс, низкая стабильность физико-химических свойств, связанная с применением нефазостабилизированного нитрата аммония.

Таким образом, существующие композиции на основе нитрата аммония характеризуются низкой скоростью горения, плохой воспламеняемостью, обусловленной большими временами задержки воспламенения и высоким предельным давлением устойчивого воспламенения и горения, низким значением удельного импульса, большой массой шлаков, наличием токсичных соединений хлора в продуктах сгорания, нестабильностью свойств нефазостабилизированного нитрата аммония, приводящей к нестабильности физико-химических свойств всей топливной композиции, что существенно ограничивает их функциональные возможности и области применения.

Наиболее близким к предлагаемому техническому решению является принятый за прототип твердотопливный газогенерирующий состав [Патент RU №2481319, опубл. 10.05.2013 г.], содержащий нитрат аммония марки ЖВ, гуанидиниевую соль динитрамида, метилполивинилтетразол, смесевой пластификатор метилполивинилтетразола, один компонент которого представляет собой 1-этил-3-нитро-1,2,4-триазол, ортокарборан и ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол.

Данный состав характеризуется низким значением удельного импульса, что приводит к увеличенным массогабаритным показателям технической системы, в которой используют состав, высокой чувствительностью скорости горения к давлению, приводящей к низкой устойчивости горения состава, обусловливающей недостаточно высокие надежность и безопасность работы всей технической системы, низкой скоростью горения, приводящей к увеличению времени срабатывания и снижающей эффективность работы всей технической системы, невысокой стабильностью физико-механических свойств, что может привести к нештатной работе технической системы вплоть до аварийной ситуации. Указанные недостатки связаны с преобладанием тепловыделения в газовой фазе над тепловыделением в конденсированной фазе, что обусловлено физико-химическими свойствами используемых компонентов, а также образованием сокристаллизатов между компонентами композиции, приводящим к переходу композиции в хрупкое состояние.

Задачей предлагаемого технического решения является создание твердотопливной металлизированной композиции, расширяющей ассортимент составов данного назначения, повышающей эффективность и надежность технической системы, в которой используется, за счет обеспечения повышения скорости горения, удельного импульса и стабильности физико-механических характеристик, меньшей зависимости скорости горения от давления путем оптимизации качественного и количественного содержания компонентов, создающей условия по обеспечению преобладания тепловыделения в конденсированной фазе над тепловыделением в газовой фазе и исключению образования сокристаллизатов между компонентами композиции, предотвращающее переход композиции в хрупкое состояние.

При этом сохраняются достоинства прототипа в части отсутствия токсичных соединений хлора в продуктах сгорания, низкой чувствительности к удару и трению, отсутствия полиморфных переходов в кристаллической решетке нитрата аммония, низкого предельного давления устойчивого воспламенения и горения.

Поставленная задача решается предлагаемой твердотопливной металлизированной композицией, содержащей нитрат аммония марки ЖВ, гуанидиниевую соль динитрамида, ортокарборан, ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол, метилполивинилтетразол, смесевой пластификатор метилполивинилтетразола, один компонент которого представляет собой 1-этил-3-нитро-1,2,4-триазол. Особенность заключается в том, что композиция содержит 2-этил-3-нитро-1,2,4-триазол в качестве второго компонента пластификатора и дополнительно содержит смесь микродисперсного порошка алюминия марки АСД-6 и ультрадисперсного порошка алюминия марки ALEX, при следующем соотношении компонентов, масс.%:

гуанидиниевая соль динитрамида 20-30 микродисперсный порошок алюминия марки АСД-6 9-11 ультрадисперсный порошок алюминия марки ALEX 9-11 метилполивинилтетразол 3,6-4,8 1-этил-3-нитро-1,2,4-триазол 9,6-10,2 2-этил-3-нитро-1,2,4-триазол 9,6-10,2 ортокарборан 2-3 ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол 0,5-1 нитрат аммония марки ЖВ остальное

Выбор в качестве окислителя нитрата аммония марки ЖВ, как и в прототипе, обусловлен стабильностью его физико-химических свойств, в частности отсутствием полиморфных переходов в кристаллической решетке в температурном интервале от минус 50°C до плюс 50°C при длительных циклических температурных испытаниях. Преимуществами нитрата аммония марки ЖВ перед другими марками фазостабилизированного нитрата аммония является малое содержание фазостабилизирующей добавки и широкая производственная база на территории РФ.

Выбор в качестве энергоемкого горючего гуанидиниевой соли динитрамида обусловлен элементным составом (малым содержанием углерода) и физико-химическими показателями, в частности низкой чувствительностью к механическим воздействиям, отсутствием токсичных соединений хлора в продуктах сгорания и высокой скоростью горения.

Метилполивинитетразол, как полимер связующего, выбран ввиду его низкой чувствительности к механическим воздействиям, высокого газообразования и энергоемкости.

Выбор в качестве пластификатора метилполивинитетразола смеси 1-этил-3-нитро-1,2,4-триазола и 2-этил-3-нитро-1,2,4-триазола обусловлен высоким содержанием окислительных элементов, низкой чувствительностью к механическим воздействиям, приемлемой совместимостью с большинством компонентов твердотопливных композиций [Попок В.Н., Вдовина Н.П., Бычин Н.В. Совместимость нанодисперсных порошков металлов и их оксидов с компонентами смесевых энергетических материалов // Российские нанотехнологии. - 2013. - Т.8. - №1-2. - С.87-93]. Соотношение компонентов в составе связующего выбрано из соображений обеспечения необходимого уровня реологических и взрывчатых характеристик, необходимого количества окисляющих и горючих элементов.

Связующее такого типа (с триазольным пластификатором, исключающим использование 2,4-динитро-2,4-диазапентана) предложено к применению в твердотопливных композициях впервые. Применение данного пластифицированного связующего в совокупности со смесевым металлическим горючим АСД-6 / ALEX позволяет повысить скорость горения и удельный импульс, снизить зависимость скорости горения от давления при одновременном обеспечении низкого уровня чувствительности к удару и трению. Такой баланс характеристик не прослеживается из известных из уровня техники решений, использующих смесевое металлическое горючее.

Повышение скорости горения и снижение зависимости скорости горения от давления обусловлено введением металлического горючего, которое приводит к существенной интенсификации химических реакций в конденсированной фазе и росту температуры, что в свою очередь также способствует ускорению процессов термического разложения и взаимодействия компонентов композиции.

Рост удельного импульса связан с введением металлического горючего в состав твердотопливной композиции. Металлическое горючее при горении окисляется, давая тем самым большое количество тепла, которое способствует ускорению химических реакций и увеличению объема газообразных продуктов сгорания.

Порошок алюминия марки АСД-6 выбран ввиду его способности увеличивать тепловыделение при горении композиций, что способствует интенсификации химических реакций, особенно в конденсированной фазе, в отличие от используемой в аналоге АСД-1.

Ультрадисперсный порошок алюминия марки ALEX выбран ввиду его высокой активности в процессах горения твердотопливных композиций.

При выбранном соотношении микро- и ультрадисперсных порошков алюминия сохраняется химическая стойкость композиции в целом [Попок В.Н., Вдовина Н.П., Бычин Н.В. Совместимость нанодисперсных порошков металлов и их оксидов с компонентами смесевых энергетических материалов // Российские нанотехнологии. - 2013. - Т.8. - №1-2. - С.87-93] и обеспечен необходимый уровень реологических характеристик.

Ортокарборан, как добавка, выбран ввиду его высокой эффективности по влиянию на интенсификацию процессов термического разложения компонентов твердотопливной композиции в конденсированной фазе при ее горении.

Ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол выбран в качестве отвердителя, так как позволяет проводить низкотемпературное отверждение композиций (при температурах менее 50°C) с получением требуемого уровня физико-механических характеристик.

Соотношение компонентов в предлагаемой композиции является оптимальным и выбрано из соображений обеспечения необходимого уровня всего комплекса рассматриваемых параметров.

Изменение содержания нитрата аммония, гуанидиниевой соли динитрамида, порошков алюминия и ортокарборана приводят к неустойчивости воспламенения и горения композиции, снижению скорости ее горения и росту зависимости скорости горения от давления.

Изменение содержания метилполивинилтетразола, 1-этил-3-нитро-1,2,4-триазола, 2-этил-3-нитро-1,2,4-триазола и ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензола приводит к снижению физико-механических показателей композиций.

Физико-химические показатели прототипа и предлагаемой композиции приведены в таблице.

Представленные в т аблице данные по чувствительности твердотопливной композиции к механическим воздействиям (P0, H0, f) получены в соответствии с ГОСТ Р 50835-95 и ГОСТ 4545-88. Содержание хлорсодержащих соединений в продуктах сгорания (CCl), величина удельного импульса (Iуд.) соответствуют расчетным термодинамическим значениям, полученным при соотношении давлений в камере сгорания/на срезе сопла 4/0,1 МПа. Количество циклов, выдерживаемых фазостабилизированным нитратом аммония (ZНА), определено циклическими испытаниями методами дифференциальной сканирующей калориметрии и дифференциально-термического анализа при скорости нагрева 10°C/мин, в интервале температур от минус 50°C до плюс 50°C. Скорость горения (u) и предельное давление устойчивого воспламенения и горения (pпр) измерены методом слабовозрастающего давления в приборе постоянного давления при воспламенении образцов навеской пороха марки ДРП массой 0,3 г. Зависимость скорости горения от давления оценена значениями параметра v в степенном законе скорости горения u(p)=b*pv. Значения физико-механических параметров (прочность - σ, предельная деформация - ε, модуль упругости при 10%-й деформации - E10%) получены в соответствии с ГОСТ 270-75. Изменение физико-механических характеристик (Δσ, Δε, ΔE10%) оценено после хранения образцов прототипа и предлагаемой композиции в течение 2 лет при нормальных условиях.

Таблица Показатель Прототип Предлагаемая композиция Хлорсодержащие соединения в продуктах сгорания (CCl), % 0 0 Чувствительность к трению (P0), МПа 520-530 510-530 Чувствительность к удару (H0), мм (mгруза=2 кг) >500 >500 Частость взрывов (f) при H=250 мм, % 10-13 10-12 Количество циклов, выдерживаемых фазостабилизированным нитратом аммония (ZНА), цикл >100 >100 Предельное давление устойчивого воспламенения и горения (pпр), МПа 0,1 0,1 Скорость горения (u), мм/с 4-6 8-9 Удельный импульс (Iуд.), с 224,9-225,8 249,3-250,6 Зависимость скорости горения от давления (v) 0,8-0,9 0,5-0,6 Изменение прочности (Δσ), % 30 2-3 Изменение предельной деформации (Δε), % 20 1-2 Изменение модуля упругости (ΔE10%), % 5 1-3

Совокупность вышеназванных компонентов и их количественное соотношение позволяет решить поставленную задачу.

Вышеназванные компоненты изготавливаются на промышленных и пилотных установках и имеют приемлемые технологические свойства.

Изготовление предлагаемой твердотопливной композиции на основе нитрата аммония производится в следующем порядке:

- подготовка порошкообразных компонентов: просев, сушка в условиях термовакуумного шкафа в течение 2 часов при остаточном давлении не более 0,01 МПа;

- приготовление связующего (пластификация метилповинилтетразола смесью 1-этил-3-нитро-1,2,4-триазола и 2-этил-3-нитро-1,2,4-триазола) и его вакуумирование в течение не менее 3 часов;

- введение в состав связующего необходимого количества (вводится частями с промежуточным вымешиванием до однородной массы) порошка алюминия марки АСД-6 (ТУ 48-5-226-87), ультрадисперсного порошка алюминия марки ALEX (ТУ 1791-003-36280340-2008), гуанидиниевой соли динитрамида, добавки ортокарборана, нитрата аммония с тщательным последующим вымешиванием массы (смешение под вакуумом);

- добавление отвердителя, перемешивание, вакуумирование.

Для проверки эффективности предложенной твердотопливной металлизированной композиции на основе нитрата аммония были проведены испытания зарядов на базе Федерального научно-производственного центра «Алтай», подтвердившие высокую эффективность предложенной рецептуры по сравнению с прототипом и аналогами.

Похожие патенты RU2541332C1

название год авторы номер документа
ТВЕРДОТОПЛИВНАЯ КОМПОЗИЦИЯ НА ОСНОВЕ НИТРАТА АММОНИЯ 2013
  • Попок Владимир Николаевич
  • Жарков Александр Сергеевич
  • Попок Николай Иванович
RU2543019C1
ТВЕРДОТОПЛИВНЫЙ ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ 2011
  • Попок Владимир Николаевич
  • Кормачева Валентина Сергеева
RU2481319C1
ТВЕРДОТОПЛИВНАЯ МЕТАЛЛИЗИРОВАННАЯ КОМПОЗИЦИЯ НА ОСНОВЕ НИТРАТА АММОНИЯ 2014
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
RU2580735C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЭНЕРГЕТИЧЕСКОГО КОМПОЗИТА 2013
  • Попок Владимир Николаевич
  • Жарков Александр Сергеевич
  • Попок Николай Иванович
RU2541265C1
ТВЕРДОТОПЛИВНАЯ КОМПОЗИЦИЯ НА ОСНОВЕ НИТРАТА АММОНИЯ 2007
  • Архипов Владимир Афанасьевич
  • Ворожцов Александр Борисович
  • Певченко Борис Васильевич
  • Попок Владимир Николаевич
  • Савельева Лилия Алексеевна
  • Сакович Геннадий Викторович
RU2363691C1
ТВЕРДОТОПЛИВНАЯ КОМПОЗИЦИЯ (ВАРИАНТЫ) 2011
  • Гарифуллин Руслан Шамилевич
  • Мокеев Александр Александрович
  • Марсов Александр Андреевич
  • Вахидов Ринат Марсович
  • Хазиев Марсель Атласович
  • Анисимов Александр Николаевич
  • Сальников Анатолий Сергеевич
RU2485082C1
ТВЕРДОТОПЛИВНЫЙ НИЗКОТЕМПЕРАТУРНЫЙ ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ 2009
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
  • Вандель Александр Павлович
RU2393140C1
СПОСОБ РЕГУЛИРОВАНИЯ СКОРОСТИ ГОРЕНИЯ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА 2008
  • Архипов Владимир Афанасьевич
  • Ворожцов Александр Борисович
  • Горбенко Татьяна Ивановна
  • Коротких Александр Геннадьевич
  • Савельева Лилия Алексеевна
  • Сакович Геннадий Викторович
RU2423338C2
СПОСОБ ПОЛУЧЕНИЯ СМЕСЕВОГО ТВЕРДОГО ТОПЛИВА 2008
  • Архипов Владимир Афанасьевич
  • Ворожцов Александр Борисович
  • Горбенко Татьяна Ивановна
  • Коротких Александр Геннадьевич
  • Савельева Лилия Алексеевна
  • Сакович Геннадий Викторович
RU2429282C2
ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ НА ОСНОВЕ НИТРАТА АММОНИЯ 2010
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
RU2444505C1

Реферат патента 2015 года ТВЕРДОТОПЛИВНАЯ МЕТАЛЛИЗИРОВАННАЯ КОМПОЗИЦИЯ

Изобретение относится к твердым топливам, которые могут быть использованы в энергетических установках и газогенераторах различного назначения. Композиция содержит нитрат аммония марки ЖВ, гуанидиниевую соль динитрамида, ортокарборан, ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол, смесь микродисперсного порошка алюминия марки АСД-6 и ультрадисперсного порошка алюминия, метилполивинилтетразол и смесевой пластификатор метилполивинилтетразола, состоящий из 1-этил-3-нитро-1,2,4-триазола и 2-этил-3-нитро-1,2,4-триазола. Обеспечивается повышение скорости горения, удельного импульса и стабильности физико-механических характеристик композиции, а также снижение зависимости скорости ее горения от давления. 1 табл.

Формула изобретения RU 2 541 332 C1

Твердотопливная металлизированная композиция, содержащая нитрат аммония марки ЖВ, гуанидиниевую соль динитрамида, ортокарборан, ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол, метилполивинилтетразол, смесевой двухкомпонентный пластификатор метилполивинилтетразола, один компонент которого представляет собой 1-этил-3-нитро-1,2,4-триазол, отличающаяся тем, что в качестве второго компонента упомянутого пластификатора она содержит 2-этил-3-нитро-1,2,4-триазол и дополнительно содержит смесь микродисперсного порошка алюминия марки АСД-6 и ультрадисперсного порошка алюминия марки ALEX при следующем соотношении компонентов, мас.%:
гуанидиниевая соль динитрамида 20-30 микродисперсный порошок алюминия марки АСД-6 9-11 ультрадисперсный порошок алюминия марки ALEX 9-11 метилполивинилтетразол 3,6-4,8 1-этил-3-нитро-1,2,4-триазол 9,6-10,2 2-этил-3-нитро-1,2,4-триазол 9,6-10,2 ортокарборан 2-3 ди-N-оксид-1,3-динитрил-2,4,6-триэтилбензол 0,5-1 нитрат аммония марки ЖВ остальное

Документы, цитированные в отчете о поиске Патент 2015 года RU2541332C1

ТВЕРДОТОПЛИВНЫЙ ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ 2011
  • Попок Владимир Николаевич
  • Кормачева Валентина Сергеева
RU2481319C1
ТВЕРДОТОПЛИВНАЯ КОМПОЗИЦИЯ НА ОСНОВЕ НИТРАТА АММОНИЯ 2007
  • Архипов Владимир Афанасьевич
  • Ворожцов Александр Борисович
  • Певченко Борис Васильевич
  • Попок Владимир Николаевич
  • Савельева Лилия Алексеевна
  • Сакович Геннадий Викторович
RU2363691C1
ТВЕРДОТОПЛИВНЫЙ НИЗКОТЕМПЕРАТУРНЫЙ ГАЗОГЕНЕРИРУЮЩИЙ СОСТАВ 2009
  • Попок Владимир Николаевич
  • Хмелев Владимир Николаевич
  • Вандель Александр Павлович
RU2393140C1
US 6017404 A1, 25.01.2000
US 5596168 A1, 21.01.1997

RU 2 541 332 C1

Авторы

Попок Владимир Николаевич

Жарков Александр Сергеевич

Вандель Александр Павлович

Попок Николай Иванович

Даты

2015-02-10Публикация

2013-12-02Подача