Изобретение относится к электрометаллургии и может быть использовано при электрошлаковом переплаве сталей с низким содержанием кислорода.
Как известно, при всех металлургических процессах металл, доведенный до заданного содержания углерода, необходимо раскислить, чтобы привести в пассивное состояние растворенный кислород и предотвратить дальнейшее окисление углерода.
Основным элементом-раскислителем стали является алюминий. Однако легкий алюминий всплывает в шлаковой ванне и выгорает при взаимодействии стали с оксидами шлака и кислородом воздуха, при этом его угар составляет 75-80%, вследствие чего использование только алюминия для раскисления нежелательно, особенно при выплавке высоколегированных, в т.ч. высокохромистых сталей с регламентированным содержанием легкоокисляющихся элементов, таких как алюминий, титан, кремний.
(«Теория и технология производства ферросплавов. Учебник для вузов», Гасик М.И. и др., М., Металлургия, 1988 г, 784 с.)
Наиболее близким по технической сущности и достигаемому результату является способ раскисления стали при электрошлаковом переплаве, включающий расплавление расходуемого электрода, замеры активности кислорода и последующее раскисление шлаковой ванны смесью марганца, кремния и алюминия.
(RU 2371491, С22В 9/18, опубликовано 10.06.2009).
Однако использование известного способа на исключает угар раскислителей, недостаточна эффективность снижения кислорода в металле выплавляемого слитка, что приводит к необходимости проводить достаточно большое количество замеров активности кислорода в стали и введение в расплав раскислителя.
Целью изобретения и его техническим результатом является снижение содержания кислорода в металле выплавляемого слитка, а также уменьшение числа необходимых замеров активности кислорода и уменьшение угара раскислителя.
Технический результат достигается тем, что способ раскисления стали при электрошлаковом переплаве включает расплавление расходуемого электрода, замер активности кислорода и последующее раскисление шлаковой ванны смесью раскислителей, при этом в качестве смеси раскислителей используют смесь, содержащую алюминий, кальций и железо при следующем соотношении компонентов, мас.%: алюминий 8-12, кальций 19-23, железо 74-69, которую принудительно подают на границу раздела шлаковой и металлической ванн в потоке нейтрального газа, причем количество оксида железа в расплавленном шлаке поддерживают не более 0,55 мас.%, а скорость подачи смеси раскислителей составляет 0,9-1,1 скорости заполнения объема металлической ванны жидким металлом расходуемого электрода.
Кальций хорошо известен как эффективный раскислитель и десульфуратор, однако его использование ограничено в связи с тем, что повышенное содержание кальция влияет на морфологию неметаллических включений и низким усвоением кальция расплавленной сталью.
Присутствие в смеси алюминия увеличивает растворимость кальция в расплавленной стали и позволяет добиться увеличения усвоения вводимых в шлак раскислителей. Заявляемое соотношение раскислительной смеси делает возможным осуществить процессы раскисления и десульфурации стали одновременно, а их подача в потоке нейтрального газа на границу раздела шлаковой и металлической ванн обеспечивает их равномерное рассредоточение в шлаковой ванне с последующим быстрым и качественным усвоением алюминия жидкой сталью и растворением кальция, что приводит к более эффективной модификации неметаллических включений, и раскисление шлаковой ванны.
Так как скорость диффузии алюминия в металлическую ванну выше, чем у кальция, то его присутствие увеличивает продолжительность процесса раскисления, что приводит к более сильному раскислению шлаковой ванны и способствует снижению содержания кислорода и серы, растворенных в металлической ванне, уменьшает число необходимых замеров активности кислорода при раскислении.
Кроме того, присутствие в составе смеси железа обеспечивает ее необходимое утяжеление, что снижает величину угара алюминия, предупреждает всплывание его в шлак и способствует лучшему усвоению в металлической ванне, а также более стабильное раскисление стали, при этом не происходит существенных изменений химического состава переплавляемой стали.
Использование нейтрального газа для введения смеси в шлаковую ванну защищает последнюю от воздействия кислорода воздуха, что дополнительно стабилизирует процесс раскисления.
Способ максимально эффективен при содержании оксида железа FeO в расплавленном шлаке не более 0,55 мас.% и скорости подачи смеси раскислителей, равной 0,9-1,1 скорости заполнения объема металлической ванны жидким металлом расходуемого электрода.
Таким образом, сочетание новых технических свойств предлагаемого решения позволяет выполнить поставленную задачу.
Визуально оценивалось состояние шлака при вводе смеси плотностью 4000-5200 кг/м3 при плотности шлака 2400-2900 кг/м3 - выбросов не наблюдалось.
В качестве примера реализации способа по изобретению можно привести раскисление расплава при электрошлаковом переплаве расходуемых электродов из стали марки 12Х10М1В1ФБРА в слитки массой 250 кг и диаметром 275 мм.
После замера активности кислорода в стали и расчета необходимого количества раскислителя принудительно подавали на границу раздела шлаковой и металлической ванн в потоке нейтрального газа аргона 4 кг смеси при соотношении компонентов, мас.%: алюминий 21%, кальций 5%, железо 74%, при этом получены следующие результаты по металлу слитка, мас.%: алюминий 0,015%, сера 0,005%, кремний 0,11%, содержание кислорода 0,005%.
Исходя из вышеупомянутых данных можно сделать вывод о значительном снижении окисленности шлака, при этом содержание оксида железа FeO изменилось от 0,5% до 0,24%, содержание Cr2O3 снизилось от 0,34% до 0,16%.
При введении суммарного количества смеси 10 кг при соотношении, мас.%: алюминий 10%, кальций 21%, железо 69%, были получены следующие результаты по металлу слитка, мас.%: алюминий 0,010%, сера 0,003%, кремний 0,09%, содержание кислорода 0,002%.
Исходя из вышеприведенных данных происходит снижение окисленности шлака, при этом он по отношению к металлической ванне изменился на восстановительный и кислород стал дополнительно удаляться из металла в шлак, обеспечивая содержание в нем FeO - 0,17%, Cr2O3 - 0,11%, что соответствует практически максимальному удалению кислорода из металла слитка.
При значительных отклонениях в скорости подачи смеси от заявляемых пределов, так же как и при неправильно выбранном количестве раскислителя и его соотношения в смеси не обеспечивается равномерное раскисление в процессе выплавления слитка, что является причиной отклонений в его химическом составе и возможной отбраковки.
Способ по изобретению стали может быть использован при выплавке полых и сплошных заготовок методом ЭШП высоколегированных сталях ответственного назначениях, в т.ч. высокохромистых для производства роторов высокого и среднего давления для турбин ССКП, комплектов трубопроводов острого пара ТЭС и АЭС, стеллажей хранения тепловыделяющих сборок из стали с повышенным содержанием бора и др.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАСКИСЛЕНИЯ СТАЛИ ПРИ ЭЛЕКТРОШЛАКОВОМ ПЕРЕПЛАВЕ | 2016 |
|
RU2630100C1 |
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА | 2007 |
|
RU2371491C2 |
СПОСОБ ЛЕГИРОВАНИЯ СТАЛЕЙ И СПЛАВОВ В ПРОЦЕССЕ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА | 2007 |
|
RU2355790C2 |
Способ получения коррозионностойкого биметаллического слитка | 2022 |
|
RU2774689C1 |
ФЛЮС ДЛЯ ЭЛЕКТРОШЛАКОВОЙ ВЫПЛАВКИ СПЛОШНЫХ И ПОЛЫХ СЛИТКОВ ИЗ БОРСОДЕРЖАЩИХ СТАЛЕЙ | 2017 |
|
RU2656910C1 |
СПОСОБ ПОЛУЧЕНИЯ БИМЕТАЛЛИЧЕСКОГО СЛИТКА | 2022 |
|
RU2786101C1 |
СПОСОБ ПОЛУЧЕНИЯ СТАЛЬНОГО ЛИСТОВОГО СЛИТКА | 1991 |
|
RU2027781C1 |
СПОСОБ ПОЛУЧЕНИЯ СЛИТКА ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ, СТАБИЛИЗИРОВАННОЙ ТИТАНОМ | 1991 |
|
RU2026386C1 |
СПОСОБ ВЫПЛАВКИ ПОЛЫХ СЛИТКОВ ТИТАН- И БОРСОДЕРЖАЩИХ МАРОК СТАЛИ МЕТОДОМ ЭШП | 2009 |
|
RU2423536C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛЫХ СЛИТКОВ ТИТАНСОДЕРЖАЩИХ МАРОК СТАЛИ МЕТОДОМ ЭШП | 2009 |
|
RU2399685C1 |
Изобретение относится к электрометаллургии и может быть использовано при электрошлаковом переплаве сталей с низким содержанием кислорода. Способ включает расплавление расходуемого электрода, замер активности кислорода и последующее раскисление шлаковой ванны смесью для раскисления, содержащей, мас.%: алюминий 8-12, кальций 19-23 и железо 74-69, которую принудительно подают на границу раздела шлаковой и металлической ванн в потоке нейтрального газа, причем количество оксида железа в расплавленном шлаке поддерживают не более 0,55 мас.%, а скорость подачи упомянутой смеси для раскисления составляет 0,9-1,1 скорости заполнения объема металлической ванны жидким металлом расходуемого электрода. Изобретение позволяет снизить содержание кислорода в металле выплавляемого слитка, а также уменьшить число необходимых замеров активности кислорода и угар раскислителя.
Способ раскисления стали при электрошлаковом переплаве, включающий расплавление расходуемого электрода, замер активности кислорода и последующее раскисление шлаковой и металлической ванн, отличающийся тем, что для раскисления используют смесь, содержащую, мас.%: алюминий 8-12, кальций 19-23 и железо 74-69, которую принудительно подают на границу раздела шлаковой и металлической ванн в потоке нейтрального газа, причем количество оксида железа в расплавленном шлаке поддерживают не более 0,55 мас.%, а скорость подачи упомянутой смеси для раскисления составляет 0,9-1,1 скорости заполнения объема металлической ванны жидким металлом расходуемого электрода.
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА | 2007 |
|
RU2371491C2 |
Флюс | 1971 |
|
SU403757A1 |
СПОСОБ РАСКИСЛЕНИЯ ШЛАКОВОЙ И МЕТАЛЛИЧЕСКОЙ ВАННЫL..-; | 0 |
|
SU174201A1 |
Соединительное устройство | 1982 |
|
SU1075046A1 |
Авторы
Даты
2015-02-10—Публикация
2013-12-16—Подача