СПОСОБ ЛЕГИРОВАНИЯ СТАЛЕЙ И СПЛАВОВ В ПРОЦЕССЕ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА Российский патент 2009 года по МПК C22B9/18 

Описание патента на изобретение RU2355790C2

Изобретение относится к специальной электрометаллургии и может быть использовано при получении высококачественных легированных сталей и сплавов при электрошлаковом переплаве.

Известен способ легирования электрошлакового металла в процессе переплава, при котором для увеличения степени усвоения легирующих материалов вместе с их окислами подают углерод. При этом усвоение легирующих элементов увеличивается с 5-6 до 40-60% (авт. св. СССР №1585339, кл. С22В 9/18, 15.08.90 г.).

Недостатком известного способа является то, что в начале переплава усвоение легирующих элементов на 15-25% меньше, чем при формировании остальной части слитка, в результате чего увеличивается технологическая обрезь со стороны нижней части слитка.

Известен способ легирования стали при электрошлаковом переплаве, включающий порционную подачу легирующих элементов в плавильное пространство. Масса порций и периоды их подачи зависят от скорости наплавления, массы жидкой металлической ванны, концентрации легирующих элементов в расходуемом электроде, требуемой концентрации элементов в готовом слитке и др. (авт. св. СССР №1420048, кл. С22В 9/18, 30.08.88 г.).

Недостатком известного способа является то, что усвоение легирующих элементов в начале переплава и в процессе переплава разное. В нижней части слитка усвоение легирующих элементов на 15-25% меньше, чем в остальной части слитка.

В качестве прототипа принят способ электрошлаковой выплавки заготовки из стали, легированной титаном, включающий дифференцированную подачу в шлак по ходу плавки раскислителя, при этом первую порцию раскислителя в количестве 1,1-3,5% от общего подают в кристалллизатор до заливки шлака (SU №1387460, кл. С22В 9/18, 30.08.90 г.).

Недостатком известного способа является то, что он относится к переплаву только сталей, легированных титаном, и в нем речь идет не о легировании, а о раскислении флюса, с целью избежать угара титана из стали. Смесь титана и алюминия, имеющих высокое сродство к кислороду, подаваемая на флюс, связывает имеющийся во флюсе кислород. Этот способ для легирования металла элементами, не имеющими высокого сродства к кислороду, не гарантирует равномерного распределения легирующих элементов по сечению слитка в его нижней части.

Задачей изобретения является легирование металла в процессе электрошлакового переплава с равномерным распределением легирующих элементов по слитку и уменьшение обрези нижней части слитка.

Задача решается следующим образом. До начала переплава в кристаллизатор печи в смеси с флюсом засыпают легирующие материалы, каждый в количестве 1-2% от его массы и фракцией 2-3 мм, а остальная часть легирующих материалов в процессе переплава подается через дозатор. Возможно легирование несколькими элементами.

Загрузка части легирующих материалов в смеси с флюсом позволяет увеличить содержание легирующего элемента в нижней части слитка.

Тщательное перемешивание флюса с легирующими материалами перед загрузкой флюса в кристаллизатор необходимо для равномерного распределения его по объему шлаковой ванны, что дает равномерное усвоение легирующих элементов по сечению наплавляемого слитка в нижней его части.

Если загружать флюс и легирующие материалы отдельно, возможна ликвация легирующих по сечению слитка в его нижней части, что увеличит технологическую обрезь.

Загрузка легирующих материалов в количестве 1 -2% позволяет получить содержание легирующего элемента в нижней части слитка такое же, как и по всей высоте слитка.

При загрузке легирующих материалов в количестве менее 1% от массы флюса содержание легирующих элементов в нижней части слитка меньше, чем по всей высоте слитка.

При загрузке легирующих материалов в количестве более 2% от массы флюса содержание легирующих элементов в нижней части слитка больше, чем по высоте слитка.

При фракции легирующих материалов 2-3 мм процент усвоения легирующих элементов в нижней части слитка соответствует его усвоению в остальной части слитка и технологическая обрезь нижней его части не превышает 130 мм.

При фракции легирующих материалов менее 2 мм усвоение легирующих элементов в нижней части слитка меньше, чем в остальной части из-за того, что при загрузке флюса происходит сублимация мелкой фракции.

При фракции легирующих материалов более 3 мм процент усвоения легирующих элементов в нижней части слитка меньше, чем в остальной части из-за недостаточно быстрого их расплавления.

Пример конкретного осуществления

На ОАО «Златоустовский металлургический завод» проведена работа по легированию металла марганцем, кремнием, хромом, ванадием и ниобием в процессе переплава расходуемых электродов на электрошлаковой печи.

Исходные материалы для легирования (феррохром марки ФХ800, марганец металлический, ферросилиций марки ФС65-75, хром металлический, феррованадий марки ВД1-3, феррониобий марки ФНб 55-60) подвергались дроблению и просеиванию через сито с ячейками 2-3 мм. Состав смеси для дозатора состоял из легирующего элемента или ферросплава, содержащего его, порошка алюминия и флюса, используемого для переплава в соотношении 3:1:1. Смесь тщательно перемешивали.

По одному из вариантов легирование металла в процессе плавки производилось через дозатор. Количество легирующего элемента в смеси выбирали из условий содержания его в расходуемом электроде, степени усвоения, массы слитка.

По остальным вариантам кроме подачи легирующего элемента через дозатор его добавляли во флюс. Для этого различное количество легирующего материала после дробления и просеивания через сито перемешивали с флюсом и засыпали в кристаллизатор перед началом плавки.

Результаты опытов приведены в таблицах 1 и 2.

При ЭШП с легированием металла через дозатор без добавления легирующего элемента во флюс перед началом плавки технологическая обрезь нижней части слитка составила 250-300 мм (20%) из-за недостаточного ее легирования.

При ЭШП с легированием металла через дозатор с добавкой легирующего материала менее 1% от массы флюса обрезь нижней части слитка составила 200 мм (13,5%) из-за недостаточного ее легирования.

При ЭШП с легированием металла через дозатор с добавкой легирующих материалов более 2% от массы флюса до начала переплава технологическая обрезь слитка составила 200-250 мм (16%) от нижней части слитка из-за излишнего легирования.

При ЭШП с легированием металла через дозатор с добавлением в рабочий флюс до начала переплава 1-2% легирующего материала от массы флюса легирующий элемент равномерно распределяется по высоте и сечению всего слитка и технологическая обрезь слитка составляет 100-130 мм (8,7%).

Предлагаемый способ позволяет получить увеличение выхода годного металла более чем на 10%.

Похожие патенты RU2355790C2

название год авторы номер документа
Способ легирования заготовки при помощи плавящегося электрода с покрытием в процессе электрошлакового переплава 2019
  • Чуманов Валерий Иванович
  • Чуманов Илья Валерьевич
  • Матвеева Мария Андреевна
  • Сергеев Дмитрий Владимирович
RU2701698C1
Способ получения многослойных слитков методом электрошлакового переплава 2021
  • Чуманов Валерий Иванович
  • Чуманов Илья Валерьевич
  • Сергеев Дмитрий Владимирович
  • Матвеева Мария Андреевна
RU2761192C1
СПОСОБ ПРОИЗВОДСТВА ВАЛЬЦА 1993
  • Дроздов В.С.
  • Павлюк Ю.И.
  • Волков А.Е.
  • Миронов В.М.
  • Соломко В.П.
  • Волкова А.И.
  • Исаханов Э.С.
RU2032754C1
СПОСОБ ВЫПЛАВКИ ПОЛЫХ СЛИТКОВ ТИТАН- И БОРСОДЕРЖАЩИХ МАРОК СТАЛИ МЕТОДОМ ЭШП 2009
  • Павлова Наталья Петровна
  • Демидов Владимир Александрович
  • Половинкин Валерий Николаевич
RU2423536C1
ПЕЧЬ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА С ПОЛЫМ НЕРАСХОДУЕМЫМ ЭЛЕКТРОДОМ 2015
  • Кочкин Сергей Викторович
  • Семин Александр Евгеньевич
  • Лосев Николай Владимирович
  • Михайлов Александр Михайлович
  • Михайлов Михаил Александрович
RU2603409C2
ФЛЮС ДЛЯ ЭЛЕКТРОШЛАКОВОЙ ВЫПЛАВКИ СПЛОШНЫХ И ПОЛЫХ СЛИТКОВ ИЗ БОРСОДЕРЖАЩИХ СТАЛЕЙ 2017
  • Левков Леонид Яковлевич
  • Шурыгин Дмитрий Александрович
  • Киссельман Михаил Анатольевич
  • Орлов Сергей Витальевич
  • Дуб Владимир Семенович
  • Волобуев Олег Сергеевич
  • Каширина Жания Казбековна
  • Ульянов Михаил Васильевич
  • Иванов Иван Алексеевич
  • Петин Михаил Михайлович
  • Клочай Виктор Владимирович
  • Гарченко Александр Александрович
  • Самбурский Павел Гаврилович
RU2656910C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ СЛИТКОВ ЭЛЕКТРОШЛАКОВЫМ ПЕРЕПЛАВОМ 1999
  • Чуманов В.И.
  • Рощин В.Е.
  • Чуманов И.В.
  • Кадочников Ю.Г.
RU2163269C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ СЛИТКОВ 2013
  • Абрамов Александр Васильевич
  • Ильгачев Анатолий Николаевич
  • Михадаров Денис Георгиевич
RU2567408C2
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ СЛИТКОВ ЭЛЕКТРОШЛАКОВЫМ ПЕРЕПЛАВОМ 2002
  • Кадочников Ю.Г.
  • Сафиуллин М.Р.
  • Растегаев Е.Н.
  • Бирт Ю.В.
RU2233341C2
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНЫХ СЛИТКОВ ЭЛЕКТРОШЛАКОВЫМ ПЕРЕПЛАВОМ 2002
  • Кадочников Ю.Г.
  • Сафиуллин М.Р.
  • Растегаев Е.Н.
  • Бирт Ю.В.
RU2242526C2

Реферат патента 2009 года СПОСОБ ЛЕГИРОВАНИЯ СТАЛЕЙ И СПЛАВОВ В ПРОЦЕССЕ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА

Изобретение относится к специальной электрометаллургии и может быть использовано при получении высококачественных легированных сталей и сплавов при электрошлаковом переплаве. Способ включает подачу части легирующих материалов в кристаллизатор печи вместе с флюсом до начала переплава и остальной части в процессе переплава, при этом подачу легирующих материалов до начала переплава в количестве 1-2% от массы флюса осуществляют в смеси с флюсом. Легирующие материалы измельчают до фракции 2-3 мм. Изобретение позволяет равномерно распределять легирующие элементы по слитку и уменьшать обрезь нижней части слитка. 1 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 355 790 C2

1. Способ легирования стали и сплавов в процессе переплава расходуемых электродов, включающий подачу части легирующих материалов в кристаллизатор печи вместе с флюсом до начала переплава и остальной части в процессе переплава, отличающийся тем, что подачу легирующих материалов до начала переплава в количестве 1-2% от массы флюса осуществляют в смеси с флюсом.

2. Способ по п.1, отличающийся тем, что легирующие материалы измельчают до фракции 2-3 мм.

Документы, цитированные в отчете о поиске Патент 2009 года RU2355790C2

Способ легирования при электрошлаковом переплаве расходуемых электродов 1986
  • Мухин Юрий Мартынович
  • Пилюшенко Виталий Лаврентьевич
  • Терехов Сергей Владимирович
  • Троянский Александр Анатольевич
  • Радченко Владимир Николаевич
SU1420048A1
SU 1387460 A1, 30.08.1990
Способ комплексного легирования электрошлакового металла 1988
  • Давыдов Александр Константинович
  • Марфицын Виктор Владимирович
SU1585339A1
СПОСОБ ЭЛЕКТРОШЛАКОВОГО ПЕРЕПЛАВА 2001
  • Бабенко Э.Г.
  • Кузьмичев Е.Н.
  • Верхотуров А.Д.
RU2207388C2
ГОРЕЛОЧНОЕ УСТРОЙСТВО 1991
  • Черняев В.И.
  • Ларюшкин М.А.
RU2011925C1

RU 2 355 790 C2

Авторы

Демидов Владимир Александрович

Павлова Наталья Петровна

Рябов Валерий Владимирович

Даты

2009-05-20Публикация

2007-03-05Подача