Изобретение относится к радиотехнике и имеет целью повысить точность измерения фазового сдвига двух квазигармонических сигналов с медленными по сравнению с несущей частотой изменениями огибающей и частоты при наличии аддитивных и мультипликативных помех.
Известен способ определения сдвига фаз двух синусоидальных сигналов [1] как арктангенса отношения двух величин, которые формируют из измеренных мгновенных значений сигналов. Недостатком способа является ограничение области его применимости синусоидальными сигналами с постоянными амплитудами и частотами, наличие амплитудной и частотной модуляции уменьшает точность измерения сдвига фаз.
Наиболее близким способом того же назначения к заявляемому изобретению по максимальному количеству сходных признаков является способ сдвига фаз между квазигармоническими сигналами с меняющимися огибающими и мгновенными частотами [2], заключающийся в том, что посредством двух аналого-цифровых преобразователей и двух распределителей отсчетов сигналов на четные и нечетные из первого и второго сигналов формируют третий и четвертый сигналы путем задержки первого и второго сигналов на один интервал, все произведения четных и нечетных сигналов, первую величину как разность произведения второго сигнала на третий и первого сигнала на четвертый, вторую величину как сумму произведения первого сигнала на второй и третьего сигнала на четвертый и оценку фазового сдвига между первым и вторым сигналами как арктангенс отношения усредненных по времени значений первой и второй величин.
Недостатком этого способа является высокая погрешность измерения сдвига фаз между квазигармоническими сигналами с меняющимися огибающими и мгновенными частотами. Действительно, пусть первый и второй квазигармонические сигналы, между которыми измеряется сдвиг фаз, имеют вид
x1(t)=a 1(t)sin[θ(t)+φ1], x2(t)=a 2(t)sin[θ(t)+φ2],
где a
1(t), a
2(t), φ1 и φ2 - огибающие и начальные фазы первого и второго сигналов соответственно, причем выполняются условия медленного изменения огибающих и мгновенной частоты
где Δ - интервал задержки.
Первая и вторая величины имеют вид
A1(t)=x3(t)x2(t)-x1(t)x4(t)≈a 1(t)a 2(t)sin(ω(t)Δ)sin(φ)+ΔA1(t),
A2(t)=x1(t)x2(t)+x3(t)x4(t)≈a 1(t)a 2(t)[cos(φ)-cos(ω)(t)Δ)cos(2θ(t)-ω(t)Δ+φ1+φ2)]+ΔA2(t),
где φ=φ1-φ2 - измеряемый сдвиг фаз.
Разлагая числитель и знаменатель отношения усредненных по отрезку времени T>>1/ω(t) первой и второй величин вряд вблизи ωΔ=π/2, получим:
где α(t) - величина порядка единицы. Таким образом, погрешность оценки сдвига фаз напрямую зависит от близости величины ω(t)Δ к величине π/2 и от скорости изменения огибающих. Для амплитудно-модулированных квазигармонических сигналов с медленно меняющейся в широких пределах мгновенной частотой эта погрешность может быть довольно велика.
Целью изобретения является уменьшение погрешности измерения сдвига фаз квазигармонических сигналов с медленно меняющимися амплитудами и частотой при наличии аддитивной и мультипликативной помех. Для этого дополнительно формируют пятый и шестой сигнал путем задержки третьего и четвертого сигналов на один фиксированный временной интервал соответственно, формируют третью величину как разность произведения первого сигнала на четвертый сигнал и произведения второго сигнала на третий сигнал, четвертую величину как разность произведения третьего сигнала на шестой сигнал и произведения четвертого сигнала на пятый сигнал, пятую величину как разность произведения первого сигнала на шестой сигнал и произведения второго сигнала на пятый сигнал, шестую величину как сумму произведения первого сигнала на шестой сигнал и произведения пятого сигнала на второй сигнал, седьмую величину как сумму произведения первого сигнала на второй сигнал и произведения пятого сигнала на шестой сигнал, восьмую величину как разность квадрата третьей величины и суммы квадратов первой и второй, при этом первую величину формируют как произведение пятой величины на квадратный корень разности учетверенного произведения квадратов третьей и четвертой величины и квадрата восьмой величины на разность удвоенного произведения третьей, четвертой и седьмой величин и произведения шестой и восьмой величин, а вторую величину формируют как квадрат разности удвоенного произведения третьей, четвертой и седьмой величин и произведения шестой и восьмой величин.
Таким образом,
A3(t)=x1(t)x2(t-Δ)-x1(t-Δ)x2(t),
A4(t)=x1(t-Δ)x2(t-2Δ)-x1(t-2Δ)x2(t-Δ),
A5(t)=x1(t)x2(t-2Δ)-x1(t-2Δ)x2(t),
A6(t)=x1(t)x2(t-2Δ)+x1(t-2Δ)x2(t),
A7(t)=x1(t)x2(t)+x1(t-2Δ)x2(t-2Δ),
Тогда
A2(t)=(2A3(t)A4(t)A7(t)-A6(t)A8(t))2,
и полученная на первом этапе оценка φ1 сдвига фаз между первым и вторым сигналами на отрезке длительностью N интервалов Δ имеет вид
где обозначено Ai[n]=Ai(nΔ), i=1, 2, 3, 4, 5, 6, 7, 8.
Численное моделирование полученных выражений подтверждает промышленную применимость предложенного способа. Погрешность определения сдвига фаз Δφ чисто гармонических сигналов при отсутствии шума не превышает 10-15 рад; по выборке в 1000 отсчетов, здесь и далее Δ=1. При наличии амплитудной или частотной модуляции, а также аддитивного шума погрешность возрастает.
На чертежах представлено:
Фиг.1 - Зависимость абсолютного отклонения оценки фазового сдвига Δφ от значения φ для гармонических сигналов с изменяющимися огибающими, постоянной частотой и малой дисперсией шума.
Фиг.2 - Зависимость абсолютного отклонения оценки фазового сдвига Δφ от значения φ для гармонических сигналов с постоянными огибающими и изменяющейся частотой.
Фиг.3 - Систематическая погрешность оценки разности фаз гармонических сигналов в зависимости от значения φ при СКО шума σξ=10-4.
Фиг.4 - Случайная погрешность оценки разности фаз гармонических сигналов в зависимости от значения φ при СКО шума σξ=10-4.
Таблица 1 - Статистические характеристики способа измерения сдвига фаз.
На Фиг.1 представлено отклонение фазового сдвига, полученное для сигналов с одинаковыми законами изменения огибающих, фиксированной частотой f0=0,2 и аддитивным шумом дисперсии 10-4 от амплитуды сигнала:
x1[n]=(1+0,2sin(2π·0,01·n))sin(2π·0,2·n+φ),
x2[n]=(1+0,2sin(2π·0,01·n))sin(2π·0,2·n).
Несмотря на 20% амплитудную модуляцию сигналов, отклонение оценки разности фаз сигналов при заданном значении разности фаз в промежутке от π/8 до 7π/8 составило порядка 10-3 рад.
Аналогичные результаты получаются для сигналов с постоянными огибающими, частотной модуляцией (Фиг.2) и малым значением аддитивного шума - 10-4 от амплитуды сигнала:
x1[n]=sin(2π·0,2·{1+0,15·cos(2π·0,00053·n)}·n+φ),
x2[n]=sin(2π·0,2·{1+0,15·cos(2π·0,00053·n)}·n).
Статистические свойства способа исследовались путем обработки смеси сигналов с аддитивным узкополосным шумом. На Фиг.3 и Фиг.4 представлены систематическая φ0сред-φ0 и случайная σφ погрешности определения фазового сдвига от значения φ, полученные по 100 реализациям, для сигналов с постоянными единичными огибающими и фиксированной частотой f0=0,2.
Зависимость статистических характеристик метода для некоторых значений дисперсии шума приведена в таблице 1.
Численные эксперименты показывают, что оптимальное значение интервала Δ лежит в диапазоне от T/6 до T/4, где T - среднее за время измерения значение периода сигнала. При соблюдении этого условия погрешность измерения сдвига фаз предложенным способом при наличии амплитудной и частотной модуляции в 103 раз меньше, чем у прототипа [2].
Источники информации
1. Келехсаев Б.Г. Способ определения сдвига фаз двух синусоидальных сигналов. Патент РФ №2039361, опубл. 09.07.1995.
2. Смирнов В.Н., Кучеров М.В. Широкополосный цифровой фазометр // Вопросы радиоэлектроники. 2004. №1. С.33-41 (прототип).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ СДВИГА ФАЗ | 2013 |
|
RU2527665C1 |
СПОСОБ ИЗМЕРЕНИЯ ВЫСОТЫ МОРСКИХ ВОЛН С ЛЕТАТЕЛЬНОГО АППАРАТА НА ПЛАВУ | 2000 |
|
RU2175111C1 |
СПОСОБ ПЕРЕДАЧИ И ПРИЕМА СИГНАЛОВ, ПРЕДСТАВЛЕННЫХ ПАРАМЕТРАМИ СТУПЕНЧАТОГО МОДУЛЯЦИОННОГО РАЗЛОЖЕНИЯ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2014 |
|
RU2584462C2 |
СПОСОБ ИЗМЕРЕНИЯ СРЕДНЕЙ ЧАСТОТЫ МОРСКИХ ВОЛН С ЛЕТАТЕЛЬНОГО АППАРАТА НА ПЛАВУ | 2001 |
|
RU2196961C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ РАСПОЛОЖЕНИЯ ОБЪЕКТОВ С ЛЕТАТЕЛЬНОГО АППАРАТА | 2007 |
|
RU2349937C1 |
АКУСТИЧЕСКИЙ АНАЛИЗАТОР СПЕКТРА | 1992 |
|
RU2046358C1 |
СИСТЕМА АДАПТИВНОГО УПРАВЛЕНИЯ НЕСТАЦИОНАРНЫМИ НЕЛИНЕЙНЫМИ ОБЪЕКТАМИ | 1990 |
|
RU2031434C1 |
СПОСОБ ИЗМЕРЕНИЯ СРЕДНЕЙ ЧАСТОТЫ МОРСКИХ ВОЛН | 2007 |
|
RU2337313C2 |
СПОСОБ ПЕЛЕНГАЦИИ РАДИОСИГНАЛОВ И ПЕЛЕНГАТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2008 |
|
RU2383897C1 |
ДВУХФАЗНЫЙ ГЕНЕРАТОР ГАРМОНИЧЕСКИХ СИГНАЛОВ | 2019 |
|
RU2699590C1 |
Изобретение относится к радиотехнике. Способ заключается в том, что посредством двух АЦП и двух распределителей отсчетов сигналов на четные и нечетные из первого и второго сигналов формируют третий и четвертый сигналы путем задержки первого и второго сигналов на один фиксированный временной интервал, все произведения четных и нечетных сигналов, первую величину как разность произведения второго сигнала на третий и первого сигнала на четвертый, вторую величину как сумму произведения первого сигнала на второй и третьего сигнала на четвертый и оценку фазового сдвига между первым и вторым сигналами как арктангенс отношения усредненных по времени значений первой и второй величин. Формируют пятый и шестой сигналы путем задержки третьего и четвертого сигналов на фиксированный временной интервал. Формируют третью величину как разность произведения первого сигнала на четвертый сигнал и произведения второго сигнала на третий сигнал, четвертую величину как разность произведения третьего сигнала на шестой сигнал и произведения четвертого сигнала на пятый сигнал, пятую величину как разность произведения первого сигнала на шестой сигнал и произведения второго сигнала на пятый сигнал, шестую величину как сумму произведения первого сигнала на шестой сигнал и произведения пятого сигнала на второй сигнал, седьмую величину как сумму произведения первого сигнала на второй сигнал и произведения пятого сигнала на шестой сигнал, восьмую величину как разность квадрата третьей величины и суммы квадратов первой и второй. Первую величину формируют как произведение пятой величины на квадратный корень разности учетверенного произведения квадратов третьей и четвертой величины и квадрата восьмой величины на разность удвоенного произведения третьей, четвертой и седьмой величин и произведения шестой и восьмой величин, а вторую величину формируют как квадрат разности удвоенного произведения третьей, четвертой и седьмой величин и произведения шестой и восьмой величин. Технический результат заключается в уменьшении погрешности измерения сдвига фаз квазигармонических сигналов с медленно меняющимися амплитудами и частотой при наличии аддитивной и мультипликативной помех. 4 ил., 1 табл.
Способ измерения сдвига фаз, заключающийся в том, что посредством двух аналого-цифровых преобразователей и двух распределителей отсчетов сигналов на четные и нечетные из первого и второго сигналов формируют третий и четвертый сигналы путем задержки первого и второго сигналов на один фиксированный временной интервал, все произведения четных и нечетных сигналов, первую величину как разность произведения второго сигнала на третий и первого сигнала на четвертый, вторую величину как сумму произведения первого сигнала на второй и третьего сигнала на четвертый и оценку фазового сдвига между первым и вторым сигналами как арктангенс отношения усредненных по времени значений первой и второй величин, отличающийся тем, что дополнительно формируют пятый и шестой сигнал путем задержки третьего и четвертого сигналов на один фиксированный временной интервал соответственно, формируют третью величину как разность произведения первого сигнала на четвертый сигнал и произведения второго сигнала на третий сигнал, четвертую величину как разность произведения третьего сигнала на шестой сигнал и произведения четвертого сигнала на пятый сигнал, пятую величину как разность произведения первого сигнала на шестой сигнал и произведения второго сигнала на пятый сигнал, шестую величину как сумму произведения первого сигнала на шестой сигнал и произведения пятого сигнала на второй сигнал, седьмую величину как сумму произведения первого сигнала на второй сигнал и произведения пятого сигнала на шестой сигнал, восьмую величину как разность квадрата третьей величины и суммы квадратов первой и второй, при этом первую величину формируют как произведение пятой величины на квадратный корень разности учетверенного произведения квадратов третьей и четвертой величины и квадрата восьмой величины на разность удвоенного произведения третьей, четвертой и седьмой величин и произведения шестой и восьмой величин, а вторую величину формируют как квадрат разности удвоенного произведения третьей, четвертой и седьмой величин и произведения шестой и восьмой величин.
Фазометр | 1988 |
|
SU1564563A1 |
Устройство для измерения фазовых сдвигов | 1986 |
|
SU1370597A1 |
Двухканальный фазометр | 1990 |
|
SU1800384A1 |
Двухканальный фазометр | 1981 |
|
SU970262A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ РАЗНОСТИ ФАЗ ДВУХ СИГНАЛОВ | 1993 |
|
RU2039361C1 |
Авторы
Даты
2015-02-10—Публикация
2013-10-04—Подача