ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ Российский патент 2015 года по МПК C22C21/10 

Описание патента на изобретение RU2542213C1

Изобретение относится к металлургии протекторных сплавов на основе алюминия и может быть использовано при производстве протекторов для защиты от коррозии различных металлических сооружений и конструкций.

Известны многочисленные композиции протекторных сплавов на основе алюминия, широко применяемые в качестве материала протекторов для защиты от коррозии металлоконструкций.

Известен протекторный сплав на основе алюминия, который содержит в мас.% цинка 4-6, марганца 0,02-0, примеси, не более: железа 0,1, кремния 0,1, алюминий - остальное (сплав АП1, ГОСТ 26251-84). Сплав имеет следующие электрохимические характеристики: рабочий потенциал - 715-730 мВ; теоретическая токоотдача - 2880 А·ч/кг, коэффициент полезного использования - 75-80%.

Недостатками протекторного сплавов является нестабильность во времени электроотрицательного потенциала, свойств и характеристик сплава, низкие прочностные характеристики, не позволяющие изготавливать из них протекторы сложной конструкции (протяженные, не имеющие стального сердечника по все длине).

Известен протекторный сплав на основе алюминия, который содержит в мас.%: цинка 17,5-20, марганца 0,25-0,4, кальция 4,3-5,3, примеси, не более: железа 0,25, кремния 0,5, меди 0,001, алюминий - остальное (А.с. СССР N 263158, С22С 21/00, 1970, БИ №7).

Недостатками приведенного протекторного сплава является нестабильность во времени электроотрицательного потенциала, свойств и характеристик сплава, вызванная наличием химической и структурной неоднородности в отливках из-за повышенного содержания легирующих компонентов (цинк, кальций), выделяющихся в отдельные фазы (зачастую катодные по сравнению к основе сплава) и интерметаллидные включения.

Задачей изобретения является создание сплава, обладающего повышенным и стабильным во времени электроотрицательным защитным потенциалом и коэффициентом полезного использования, повышенной прочностью за счет снижения степени химической и структурной неоднородности и пористости литых протекторов, что обеспечивает эффективно защиту от коррозии металлических сооружений и конструкций.

Технический результат заключается в обеспечении достаточно высоких электрохимических характеристик и исключении опасности пассивации поверхности литых протекторов, изготовленных из предлагаемого сплава, а также повышении предела прочности на растяжение сплава. Этот технический результат достигается тем, что сплав, включающий алюминий, цинк, марганец и кальций, дополнительно содержит титан и магний при следующем соотношении компонентов, мас. %:

цинк 4,0-6,0 марганец 0,1-0,3 магний 0,5-2,5 титан 0,01-0,1 кальций 0,005-0,01, алюминий остальное при ограничении содержания примесей, не более, масс %: железо 0,1 медь 0,01 кремний 0,1 водород 0,35 см3/100 г Ме

Предлагаемый сплав имеет следующие электрохимические характеристики:

рабочий потенциал - 720-730 мВ;

теоретическая токоотдача - 2870-2890 А·ч/кг;

коэффициент полезного использования (КПИ) - 78-82%

За счет цинка в пределах 4-6 мас.% данный сплав можно использовать в качестве протектора в малопроводящих и не содержащих хлоридов средах.

Магний сдвигает электрохимический потенциал в отрицательную сторону, а также препятствует пассивации алюминиевого материала за счет активизации поверхностного слоя протектора.

Присутствие марганца в пределах 0,1-0,3 нейтрализует вредное влияние железа вследствие уменьшения склонности алюминиевых сплавов к межкристаллитной коррозии и коррозии под напряжением.

Кальций в указанных количествах также нейтрализует вредное влияние железа, оказывает модифицирующее воздействие при кристаллизации на зернистую структуру, вследствие чего повышается предел текучести, предел прочности на растяжение. Добавки кальция смещают потенциал алюминиевого сплава в отрицательную область, препятствуют пассивации поверхности алюминиевого протекторного сплава в процессе работы протектора.

Титан, присутствуя даже в незначительных количествах, заметно повышает растворимость водорода в алюминии. При разных условиях титан активно растворяет и образует гидриды переменного состава. Таким образом происходит нейтрализация свободного водорода в алюминиевом сплаве. Также легирование титана увеличивает прочностные характеристики алюминиевого сплава.

Катодные примеси (железа, кремния, меди) при увеличении их содержания в протекторных сплавах выше допустимых значений значительно снижают основные электрохимические свойства алюминиевых протекторных сплавов за счет возникновения структурной неоднородности в отливках, выделяясь в отдельные фазы и интерметаллидные включения.

Ограничение содержания водорода в предложенном сплаве связано с отрицательным воздействием, образующихся при изготовлении литых протекторов, газовой пористости, которая способствует неравномерному их точечно-язвенному характеру растворения, что приводит к снижению токоотдачи и, как следствие, к уменьшению срока службы протекторов.

Для эксперимента были использованы сплавы на основе алюминия, содержащие железа не более 0,01%, кремния не более 0,1% и меди не более 0,01% с различным содержанием легирующих компонентов в заявленных пределах. Сплавы готовили в графитошамотных тиглях в печи сопротивления. Процесс приготовления сплавов осуществляли следующим образом: расплавляли алюминий, последовательно вводили расчетные навески марганца, лигатуры алюминий-титан и алюминий-кальций. Далее вводили цинк и магний. После расплавления всех компонентов шихты проводили перемешивание расплава. Далее проводили рафинирование расплава продувкой аргоном в течение 10 мин (min), с последующей выдержкой при температуре 730-740°С в течение 10-15 мин. Перед разливанием сплава поверхность расплава очищали от шлаковых и оксидных включений. Далее проводили разливку сплавов. Химический состав и электрохимические характеристики опытных сплавов приведены в табл.1.

Как видно из табл.1, сплавы №№2-5(а,б), содержащие легирующие компоненты в заявленных пределах, имеют стабильно высокие электрохимические характеристики, при этом наибольший разброс характеристик имеют сплавы с содержанием водорода выше заявленного (сплавы №№2-5в). Наилучшие характеристики показал сплав №3а.

Использование предлагаемого сплава по сравнению с прототипом (сплав 1) позволит применять литые протекторы с более стабильными электрохимическими характеристиками и высоким сроком службы протекторных материалов в условиях эксплуатации.

Таблица 1 № спла-
ва
Содержание элементов, % Электрохимичес-
кие характеристики
Al Zn Мn Mg Ti Са Водород, см3/100 г Me p, мВ КПИ, % 1 А.с. 263158 остальное 17,5-20 0,25-04 - - 4,3-5,3 - 710-725 70-80 Примеси, не более: 0,22 Fe; 0,4 Si; 0,001 Cu 2 а 4,2 0,12 0,7 0,018 0,005 0,12 724 79 б 0,34 722 78 в 0,51 720 70 3 а 5,7 0,28 2,2 0,091 0,009 0,18 728 80 б 0,32 726 79 в 0,48 722 74 4 а 5,2 0,20 0,9 0,026 0,007 0,09 730 82 б 0,29 728 79 в 0,53 722 71 5 а 4,8 0,24 0,7 0,054 0,005 0,07 726 80 б 0,032 724 78 в 0,51 720 73

Похожие патенты RU2542213C1

название год авторы номер документа
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ ЦИНКА 1997
  • Кечин В.А.
  • Соложенко В.Л.
RU2111277C1
ПРОТЕКТОРНЫЙ СПЛАВ НА АЛЮМИНИЕВОЙ ОСНОВЕ 2010
  • Кузьмин Юрий Львович
  • Трощенко Валерий Николаевич
  • Тарандо Георгий Викторович
  • Лащевский Василий Онуфриевич
  • Грефенштейн Анатолий Александрович
  • Симахин Андрей Дмитриевич
  • Васильев Виктор Германович
RU2483133C2
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2002
  • Аминов С.Н.
  • Грефенштейн А.А.
  • Макаров С.Д.
  • Кузьмин Ю.Л.
  • Трощенко В.Н.
  • Тарандо Г.В.
RU2263154C2
АНОД-ПРОТЕКТОР 2011
  • Зеленецкий Тарас Андреевич
  • Иванов Николай Куперянович
  • Петров Николай Георгиевич
  • Кечин Андрей Владимирович
  • Петриченко Ирина Васильевна
RU2480537C1
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1990
  • Ахмедов Н.М.
  • Ханларова А.Г.
  • Демидов-Полякман Ф.Д.
  • Мехмандаров С.А.
  • Ахмедов О.А.
  • Костылев А.А.
  • Саков В.С.
  • Степанов Ю.Н.
SU1764327A1
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2008
  • Синявский Владимир Сергеевич
  • Калинин Виктор Дмитриевич
  • Уланова Валентина Васильевна
RU2395605C1
Протекторный сплав на основе алюминия 1988
  • Баркалов Александр Иванович
  • Бычков Юрий Борисович
  • Гамольский Адольф Миронович
  • Городничий Николай Иванович
  • Грдзелидзе Георгий Ясонович
  • Кердзевадзе Бадри Харлампиевич
  • Купершток Юрий Ефимович
  • Пан Леонид Дмитриевич
  • Приходько Владимир Викторович
  • Семак Игорь Дмитриевич
  • Троянский Александр Анатольевич
  • Циргвава Юза Ипполитович
  • Ширяев Владислав Тихонович
SU1611967A1
ПРОТЕКТОР НА ОСНОВЕ МАГНИЕВОГО СПЛАВА 2009
  • Петров Николай Георгиевич
  • Ермаков Виктор Валентинович
  • Раушкин Юрий Владимирович
  • Горюнов Олег Алексеевич
  • Штраус Александр Яковлевич
  • Сингаевский Николай Алексеевич
  • Напрасник Анатолий Васильевич
  • Забара Владимир Федорович
RU2405862C1
ПРОТЕКТОРНЫЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1995
  • Липкин Я.Н.
  • Андреев Ю.Я.
  • Самаричев С.В.
RU2099436C1
Сплав на основе магния 1973
  • Люблинский Ефим Яковлевич
  • Вяткин Игорь Павлович
  • Кечин Владимир Андреевич
  • Котик Виктор Герасимович
  • Кирина Лариса Федоровна
  • Бибиков Николай Николаевич
SU557116A1

Реферат патента 2015 года ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Изобретение относится к металлургии протекторных сплавов на основе алюминия и может быть использовано при производстве протекторов для защиты от коррозии различных металлических сооружений и конструкций. Сплав содержит, мас. %: цинк - 4,0-6,0, марганец - 0,1-0,3, магний - 0,5-2,5, титан - 0,01-0,1, кальций - 0,005-0,01, алюминий - остальное при следующем ограничении содержания примесей: железо - не более 0,1, медь - не более 0,01, кремний - не более 0,1, водород - не более 0,35 см3/100г металла. Технический результат заключается в обеспечении высоких электрохимических характеристик и исключении опасности пассивации поверхности литых протекторов, изготовленных из предлагаемого сплава, а также повышении предела прочности на растяжение сплава. 1 табл.

Формула изобретения RU 2 542 213 C1

Протекторный сплав на основе алюминия, содержащий цинк, марганец, кальций и примеси, отличающийся тем, что он дополнительно содержит титан и магний при следующем соотношении компонентов, мас. %:
цинк 4-6 марганец 0,1-0,3 магний 0,5-2,5 титан 0,01-0,1 кальций 0,005-0,01 примеси: железо не более 0,1 медь не более 0,01 кремний не более 0,1 водород не более 0,35 см3/100г металла алюминий остальное

Документы, цитированные в отчете о поиске Патент 2015 года RU2542213C1

ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 0
SU263158A1
ПРОТЕКТОРНЫЙ СПЛАВ НА АЛЮМИНИЕВОЙ ОСНОВЕ 2010
  • Кузьмин Юрий Львович
  • Трощенко Валерий Николаевич
  • Тарандо Георгий Викторович
  • Лащевский Василий Онуфриевич
  • Грефенштейн Анатолий Александрович
  • Симахин Андрей Дмитриевич
  • Васильев Виктор Германович
RU2483133C2
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 1990
  • Ахмедов Н.М.
  • Ханларова А.Г.
  • Демидов-Полякман Ф.Д.
  • Мехмандаров С.А.
  • Ахмедов О.А.
  • Костылев А.А.
  • Саков В.С.
  • Степанов Ю.Н.
SU1764327A1
WO 1994023082 A1, 13.10.1984
JP 57002855 A, 08.01.1982

RU 2 542 213 C1

Авторы

Кечин Владимир Андреевич

Киреев Андрей Викторович

Даты

2015-02-20Публикация

2013-11-12Подача