Изобретение относится к металлургии протекторных сплавов на основе алюминия и может быть использовано при производстве протекторов для защиты от коррозии различных металлических сооружений и конструкций.
Известны многочисленные композиции протекторных сплавов на основе алюминия, широко применяемые в качестве материала протекторов для защиты от коррозии металлоконструкций.
Известен протекторный сплав на основе алюминия, который содержит в мас.% цинка 4-6, марганца 0,02-0, примеси, не более: железа 0,1, кремния 0,1, алюминий - остальное (сплав АП1, ГОСТ 26251-84). Сплав имеет следующие электрохимические характеристики: рабочий потенциал - 715-730 мВ; теоретическая токоотдача - 2880 А·ч/кг, коэффициент полезного использования - 75-80%.
Недостатками протекторного сплавов является нестабильность во времени электроотрицательного потенциала, свойств и характеристик сплава, низкие прочностные характеристики, не позволяющие изготавливать из них протекторы сложной конструкции (протяженные, не имеющие стального сердечника по все длине).
Известен протекторный сплав на основе алюминия, который содержит в мас.%: цинка 17,5-20, марганца 0,25-0,4, кальция 4,3-5,3, примеси, не более: железа 0,25, кремния 0,5, меди 0,001, алюминий - остальное (А.с. СССР N 263158, С22С 21/00, 1970, БИ №7).
Недостатками приведенного протекторного сплава является нестабильность во времени электроотрицательного потенциала, свойств и характеристик сплава, вызванная наличием химической и структурной неоднородности в отливках из-за повышенного содержания легирующих компонентов (цинк, кальций), выделяющихся в отдельные фазы (зачастую катодные по сравнению к основе сплава) и интерметаллидные включения.
Задачей изобретения является создание сплава, обладающего повышенным и стабильным во времени электроотрицательным защитным потенциалом и коэффициентом полезного использования, повышенной прочностью за счет снижения степени химической и структурной неоднородности и пористости литых протекторов, что обеспечивает эффективно защиту от коррозии металлических сооружений и конструкций.
Технический результат заключается в обеспечении достаточно высоких электрохимических характеристик и исключении опасности пассивации поверхности литых протекторов, изготовленных из предлагаемого сплава, а также повышении предела прочности на растяжение сплава. Этот технический результат достигается тем, что сплав, включающий алюминий, цинк, марганец и кальций, дополнительно содержит титан и магний при следующем соотношении компонентов, мас. %:
Предлагаемый сплав имеет следующие электрохимические характеристики:
рабочий потенциал - 720-730 мВ;
теоретическая токоотдача - 2870-2890 А·ч/кг;
коэффициент полезного использования (КПИ) - 78-82%
За счет цинка в пределах 4-6 мас.% данный сплав можно использовать в качестве протектора в малопроводящих и не содержащих хлоридов средах.
Магний сдвигает электрохимический потенциал в отрицательную сторону, а также препятствует пассивации алюминиевого материала за счет активизации поверхностного слоя протектора.
Присутствие марганца в пределах 0,1-0,3 нейтрализует вредное влияние железа вследствие уменьшения склонности алюминиевых сплавов к межкристаллитной коррозии и коррозии под напряжением.
Кальций в указанных количествах также нейтрализует вредное влияние железа, оказывает модифицирующее воздействие при кристаллизации на зернистую структуру, вследствие чего повышается предел текучести, предел прочности на растяжение. Добавки кальция смещают потенциал алюминиевого сплава в отрицательную область, препятствуют пассивации поверхности алюминиевого протекторного сплава в процессе работы протектора.
Титан, присутствуя даже в незначительных количествах, заметно повышает растворимость водорода в алюминии. При разных условиях титан активно растворяет и образует гидриды переменного состава. Таким образом происходит нейтрализация свободного водорода в алюминиевом сплаве. Также легирование титана увеличивает прочностные характеристики алюминиевого сплава.
Катодные примеси (железа, кремния, меди) при увеличении их содержания в протекторных сплавах выше допустимых значений значительно снижают основные электрохимические свойства алюминиевых протекторных сплавов за счет возникновения структурной неоднородности в отливках, выделяясь в отдельные фазы и интерметаллидные включения.
Ограничение содержания водорода в предложенном сплаве связано с отрицательным воздействием, образующихся при изготовлении литых протекторов, газовой пористости, которая способствует неравномерному их точечно-язвенному характеру растворения, что приводит к снижению токоотдачи и, как следствие, к уменьшению срока службы протекторов.
Для эксперимента были использованы сплавы на основе алюминия, содержащие железа не более 0,01%, кремния не более 0,1% и меди не более 0,01% с различным содержанием легирующих компонентов в заявленных пределах. Сплавы готовили в графитошамотных тиглях в печи сопротивления. Процесс приготовления сплавов осуществляли следующим образом: расплавляли алюминий, последовательно вводили расчетные навески марганца, лигатуры алюминий-титан и алюминий-кальций. Далее вводили цинк и магний. После расплавления всех компонентов шихты проводили перемешивание расплава. Далее проводили рафинирование расплава продувкой аргоном в течение 10 мин (min), с последующей выдержкой при температуре 730-740°С в течение 10-15 мин. Перед разливанием сплава поверхность расплава очищали от шлаковых и оксидных включений. Далее проводили разливку сплавов. Химический состав и электрохимические характеристики опытных сплавов приведены в табл.1.
Как видно из табл.1, сплавы №№2-5(а,б), содержащие легирующие компоненты в заявленных пределах, имеют стабильно высокие электрохимические характеристики, при этом наибольший разброс характеристик имеют сплавы с содержанием водорода выше заявленного (сплавы №№2-5в). Наилучшие характеристики показал сплав №3а.
Использование предлагаемого сплава по сравнению с прототипом (сплав 1) позволит применять литые протекторы с более стабильными электрохимическими характеристиками и высоким сроком службы протекторных материалов в условиях эксплуатации.
ва
кие характеристики
название | год | авторы | номер документа |
---|---|---|---|
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ ЦИНКА | 1997 |
|
RU2111277C1 |
ПРОТЕКТОРНЫЙ СПЛАВ НА АЛЮМИНИЕВОЙ ОСНОВЕ | 2010 |
|
RU2483133C2 |
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2002 |
|
RU2263154C2 |
АНОД-ПРОТЕКТОР | 2011 |
|
RU2480537C1 |
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 1990 |
|
SU1764327A1 |
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 2008 |
|
RU2395605C1 |
Протекторный сплав на основе алюминия | 1988 |
|
SU1611967A1 |
ПРОТЕКТОР НА ОСНОВЕ МАГНИЕВОГО СПЛАВА | 2009 |
|
RU2405862C1 |
ПРОТЕКТОРНЫЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 1995 |
|
RU2099436C1 |
Сплав на основе магния | 1973 |
|
SU557116A1 |
Изобретение относится к металлургии протекторных сплавов на основе алюминия и может быть использовано при производстве протекторов для защиты от коррозии различных металлических сооружений и конструкций. Сплав содержит, мас. %: цинк - 4,0-6,0, марганец - 0,1-0,3, магний - 0,5-2,5, титан - 0,01-0,1, кальций - 0,005-0,01, алюминий - остальное при следующем ограничении содержания примесей: железо - не более 0,1, медь - не более 0,01, кремний - не более 0,1, водород - не более 0,35 см3/100г металла. Технический результат заключается в обеспечении высоких электрохимических характеристик и исключении опасности пассивации поверхности литых протекторов, изготовленных из предлагаемого сплава, а также повышении предела прочности на растяжение сплава. 1 табл.
Протекторный сплав на основе алюминия, содержащий цинк, марганец, кальций и примеси, отличающийся тем, что он дополнительно содержит титан и магний при следующем соотношении компонентов, мас. %:
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 0 |
|
SU263158A1 |
ПРОТЕКТОРНЫЙ СПЛАВ НА АЛЮМИНИЕВОЙ ОСНОВЕ | 2010 |
|
RU2483133C2 |
ПРОТЕКТОРНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ | 1990 |
|
SU1764327A1 |
WO 1994023082 A1, 13.10.1984 | |||
JP 57002855 A, 08.01.1982 |
Авторы
Даты
2015-02-20—Публикация
2013-11-12—Подача