Изобретение относится к области авиационной техники, а именно к системе автоматического управления самолетом в продольной плоскости при его снижении в режиме «возврат» на аэродром.
Логика автоматического управления самолетом при выполнении режима «возврат» состоит в следующем (фиг.1). Задается траектория снижения в виде прямой линии с углом наклона 6° к плоскости горизонта. На первом этапе, когда самолет находится ниже траектории снижения, выполняется режим стабилизации высоты полета. Заданная высота стабилизации устанавливается на уровне 11000 м (номинальное значение), но может выбираться летчиком самостоятельно как выше, так и ниже заданного номинального значения. Высота полета стабилизируется до момента пересечения траектории движения самолета с наклонным участком траектории снижения.
На втором этапе режима «возврат» самолет переводится на наклонный прямолинейный участок заданной траектории снижения, после чего выполняется стабилизация его положения на этой траектории. При достижении самолетом заданной высоты снижения при выполнении режима автоматического захода на посадку (т.н. высоты круга), номинальное значение которой составляет 600 м, осуществляется стабилизация этой высоты до момента включения режима автоматического захода на посадку.
Режим «возврат» может включаться летчиком также на высоте, когда самолет находится выше заданной наклонной траектории снижения (после ее пересечения). В этом случае сразу выполняется приведение самолета на наклонный участок траектории снижения с последующей стабилизацией его положения на этой прямой (без участка стабилизации высоты).
Сигнал ΔН линейного отклонения самолета по высоте от заданной траектории снижения как на участках стабилизации высоты, так и на наклонном участке заданной траектории снижения, формируется с помощью специализированного навигационно-измерительного комплекса. При этом ΔH=H-Hзад, где Н - текущая высота полета самолета, Hзад - заданная высота полета самолета, формируемая прямолинейной траекторией снижения с углом наклона 6°.
Управление самолетом на всех этапах выполнения режима «возврат» осуществляется автоматически путем отработки сигнала nузад заданной вертикальной перегрузки.
К системе автоматического управления самолетом при снижении предъявляются следующие требования:
- при «вписывании» самолета на наклонную прямолинейную траекторию снижения из различных вариантов включения режима «возврат» (в момент пересечения или после пересечения траектории снижения) вертикальная скорость самолета не должна превышать по величине 50 м/сек;
- по мере уменьшения высоты включения режима «возврат» допустимая вертикальная скорость самолета должна снижаться до безопасных, с точки зрения летчика, величин;
- при стабилизации самолета на заданной траектории снижения не должны возникать статические ошибки (ΔН→0).
Известна система автоматической стабилизации заданной высоты полета самолета, использующая в своей работе сигналы угловой скорости тангажа, линейного отклонения и скорости линейного отклонения от заданной высоты (Михалев И.А., Окоемов Б.Н., Павлина И.Г., Чикулаев М.С., Киселев Ю.Ф. Системы автоматического и директорного управления самолетом. М., Машиностроение, 1974, 232 с., рис.2.4, с.40). Ее недостатком является отсутствие контроля за вертикальной скоростью самолета - она может значительно превышать допустимые значения при отработке больших отклонений самолета от заданной высоты.
Другой известной системе автоматической стабилизации заданной высоты полета самолета, использующей в своей работе сигналы угловой скорости тангажа, линейного отклонения от заданной траектории и угла тангажа (Михалев И.А., Окоемов Б.Н., Павлина И.Г., Чикулаев М.С., Киселев Ю.Ф. Системы автоматического и директорного управления самолетом. М., Машиностроение, 1974, 232 с., рис.2.7, с.44), присущ тот же недостаток, а именно возможность превышения допустимой вертикальной скорости при отработке больших отклонений самолета от заданной высоты.
Наиболее близкой к заявляемой системе автоматического управления самолетом при снижении (прототипом) является классическая система управления высотой полета (Боднер В.А. Теория автоматического управления полетом. М., Наука, 1964, 700 с., рис.4.2, с.178). Данная система содержит навигационно-измерительный комплекс, на первом выходе которого формируется сигнал ΔН линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал Vy вертикальной скорости самолета. Также система содержит первый и второй масштабные блоки, входы которых соединены соответственно с первым и вторым выходами навигационно-измерительного комплекса, первый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго масштабных блоков, руль высоты самолета, соединенный с выходом рулевого привода. Кроме того, система-прототип снабжена тангажным автоматом продольного управления (АПУ), вход которого подключен к выходу первого сумматора, а выход - к входу рулевого привода. На выходе первого сумматора формируется командный сигнал ϑзад заданного приращения угла тангажа относительно балансировочного значения, отрабатываемого затем самолетом совместно с тангажным АПУ:
где КΔH - масштабный коэффициент первого масштабного блока,
В указанной системе-прототипе после окончания переходных процессов на этапе «вписывания» на заданную траекторию снижения командный сигнал ϑзад на выходе первого сумматора получается равным нулю, а именно: ϑзад=0.
С учетом того, что при этом Vy=-V·Sin6° следует, что в установившемся состоянии
где V - скорость полета самолета при снижении.
Анализ соотношения (2) показывает, что в системе-прототипе всегда будет иметь место методическая ошибка стабилизации самолета на траектории снижения, а именно, снос вверх от этой траектории (ΔН>0), причем тем больший, чем больше скорость полета. Конкретная величина ошибки стабилизации определяется выбранными масштабными коэффициентами КΔH,
Таким образом, основными недостатками системы-прототипа при снижении самолета в режиме «возврат» являются:
- отсутствие контроля за вертикальной скоростью самолета - она может значительно превышать допустимые значения (50 м/с) при отработке больших начальных отклонений самолета от заданной высоты в момент включения режима «возврат»;
- появление больших статических ошибок стабилизации самолета на траектории снижения, а именно, движение самолета при снижении после окончания переходных процессов происходит по прямой, параллельной заданной траектории снижения с превышением линейного отклонения самолета по высоте в несколько десятков метров, т.е. имеет место «параллельный снос» реальной траектории снижения относительно заданной. Конкретное значение возникающих ошибок стабилизации зависит от конкретных значений масштабных коэффициентов в масштабных блоках и от скорости полета самолета. Ошибки тем больше, чем больше скорость полета;
- использование тангажного автомата продольного управления самолетом, которому свойственны невысокие характеристики ветроустойчивости, т.к. известно, что для повышения точности стабилизации самолета на заданной траектории снижения предпочтительно применение перегрузочного автомата продольного управления (см., например, Михалев И.А., Окоемов Б.Н., Чикулаев М.С. Системы автоматической посадки. М., Машиностроение, 1975, 216 с., с.99).
Техническим результатом заявляемой системы автоматического управления самолетом при снижении является повышение точности стабилизации самолета на траектории снижения вследствие исключения статических ошибок стабилизации на заданной траектории снижения и за счет использования перегрузочного АПУ, а также повышение безопасности пилотирования за счет ограничения вертикальной скорости самолета в допустимых пределах (-50 м/с<Vy<+50 м/с).
Технический результат достигается тем, что система автоматического управления самолетом при снижении содержит навигационно-измерительный комплекс, на первом выходе которого формируется сигнал ΔН линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал Vy вертикальной скорости самолета, также система содержит первый и второй масштабные блоки, первый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго масштабных блоков, руль высоты самолета, соединенный с выходом рулевого привода. Дополнительно данная система автоматического управления содержит первый и второй нелинейные блоки, второй, третий и четвертый сумматоры, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления (АПУ), а навигационно-измерительный комплекс снабжен третьим выходом, на котором формируется сигнал Н текущей высоты полета, при этом первый и второй входы первого нелинейного блока подключены соответственно к первому и третьему выходам навигационно-измерительного комплекса, второй выход которого соединен с первыми входами второго и четвертого сумматоров, выход первого нелинейного блока подключен к входам первого масштабного блока, второго нелинейного блока и к первому входу третьего сумматора, второй инвертирующий вход которого соединен с выходом интегратора, а выход - со вторым входом второго сумматора и с первым входом блока перемножения сигналов, второй вход которого соединен с выходом второго нелинейного блока, к выходу блока перемножения сигналов подключен второй вход четвертого сумматора, выход которого подключен к входу второго масштабного блока, вход интегратора соединен с выходом второго сумматора, выход первого сумматора, формирующий сигнал nузад заданной вертикальной перегрузки, подключен к входу перегрузочного АПУ, выход которого соединен с входом рулевого привода.
Таким образом, безопасность пилотирования обеспечивается тем, что вертикальная скорость самолета при снижении ограничивается (на уровне 50 м/с) с помощью первого нелинейного блока, а повышение точности стабилизации самолета на заданной траектории снижения достигается за счет следующих факторов:
- вследствие дополнительно введенных второго, третьего и четвертого сумматоров, интегратора, второго нелинейного блока, блока перемножения сигналов, а также установления новых связей между блоками, на выходе третьего сумматора формируется сигнал Vy0 постоянной составляющей вертикальной скорости, равный по величине и обратный по знаку установившемуся значению вертикальной скорости самолета (Vy)уст при движении самолета по заданной прямолинейной траектории снижения, т.e. Vy0=-(Vy)уст=V·Sin6°;
- на выходе четвертого сумматора при малых отклонениях от заданной траектории снижения (ΔН≤50 м) формируется сигнал ΔVy скорости линейного отклонения самолета по высоте от заданной траектории снижения, равный вертикальной скорости самолета Vy за вычетом компоненты (Vy)уст: ΔVy=Vy-(Vy)уст;
- исключение компоненты (Vy)уст из сигнала Vy вертикальной скорости самолета и последующее использование полученного таким образом сигнала ΔVy, участвующего далее в формировании сигнала nузад заданной вертикальной перегрузки на выходе первого сумматора, позволяет исключить «параллельный снос» самолета при снижении по прямолинейной заданной траектории снижения и, тем самым, повысить точность работы системы управления;
- применение перегрузочного АПУ вместо тангажного АПУ позволяет дополнительно повысить точность работы системы управления за счет снижения динамических ошибок стабилизации самолета на траектории снижения при действии ветровых возмущений в условиях турбулентной атмосферы.
Сущность изобретения поясняется графическими изображениями:
на фиг.1 представлена графическая схема порядка выполнения режима снижения самолета в режиме «возврат» на аэродром;
на фиг.2 изображена заявляемая система автоматического управления самолетом при снижении;
на фиг.3 показан типовой переходный процесс изменения высоты при снижении самолета с предлагаемой системой управления.
На фиг.1-3 использованы следующие обозначения:
1 - навигационно-измерительный комплекс
2, 3 - первый и второй масштабные блоки соответственно
4, 5, 6, 7 - первый, второй, третий и четвертый сумматоры соответственно
8, 9 - первый и второй нелинейные блоки соответственно
10 - интегратор
11 - блок перемножения сигналов
12 - перегрузочный автомат продольного управления (АПУ)
13 - рулевой привод
14 - руль высоты
Vy - вертикальная скорость самолета
Vy0 - сигнал постоянной составляющей вертикальной скорости самолета
ΔVy - сигнал скорости линейного отклонения самолета по высоте от заданной траектории снижения
nузад - сигнал заданной вертикальной перегрузки
Δny - избыточная вертикальная перегрузка
ΔН - сигнал линейного отклонения самолета по высоте от заданной траектории снижения
ΔН* - ограниченный по уровню сигнал линейного отклонения самолета по высоте от заданной траектории снижения
Н - текущая высота полета самолета
Hзад - заданная высота полета самолета
Hкруга - высота круга
КΔH - масштабный коэффициент первого масштабного блока 2
p - оператор дифференцирования
ВПП - взлетно-посадочная полоса
t - время, с.
Система автоматического управления самолетом при снижении (фиг.2) содержит навигационно-измерительный комплекс 1, на первом выходе которого формируется сигнал ΔН линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал Vy вертикальной скорости самолета. Также система содержит первый 2 и второй 3 масштабные блоки, первый сумматор 4, входы которого подключены к выходам первого 2 и второго 3 масштабных блоков, руль высоты 14 самолета, соединенный с выходом рулевого привода 13. Дополнительно система управления содержит первый 8 и второй 9 нелинейные блоки, второй 5, третий 6 и четвертый 7 сумматоры, интегратор 10, блок перемножения сигналов 11, перегрузочный АПУ 12, а навигационно-измерительный комплекс 1 снабжен третьим выходом, на котором формируется сигнал Н текущей высоты полета самолета, при этом первый и второй входы первого нелинейного блока 8 подключены соответственно к первому и третьему выходам навигационно-измерительного комплекса 1, второй выход которого соединен с первыми входами второго 5 и четвертого 7 сумматоров, выход первого нелинейного блока 8 подключен к входам первого масштабного блока 2, второго нелинейного блока 9 и к первому входу третьего сумматора 6, второй инвертирующий вход которого соединен с выходом интегратора 10, а выход - со вторым входом второго сумматора 5 и с первым входом блока перемножения сигналов 11, второй вход которого соединен с выходом второго нелинейного блока 9, к выходу блока перемножения сигналов 11 подключен второй вход четвертого сумматора 7, выход которого подключен к входу второго масштабного блока 3, вход интегратора 10 соединен с выходом второго сумматора 5, выход первого сумматора 4, формирующий сигнал nузад заданной вертикальной перегрузки, подключен к входу перегрузочного АПУ 12, выход которого соединен с входом рулевого привода 13.
Система автоматического управления самолетом при снижении работает следующим образом.
При малых отклонениях самолета от заданной траектории снижения, когда ΔН*=ΔН, на выходе третьего сумматора 6 формируется сигнал Vy0, равный по величине и обратный по знаку установившемуся значению вертикальной скорости самолета (Vy)уст при движении самолета по заданной прямолинейной траектории снижения. Из рассмотрения связей между вторым сумматором 5, интегратором 10 и третьим сумматором 6 (фиг.2) следует, что:
где р - оператор дифференцирования.
Учитывая, что
где
а также что
где (Vy)зад - заданное значение вертикальной скорости самолета, получается:
Как следует из (3), при движении самолета строго по наклонной прямолинейной траектории приблизительно через 3 секунды на выходе третьего сумматора 6 устанавливается сигнал Vy0, равный установившемуся значению вертикальной скорости самолета (Vy)уст и обратный ему по знаку. Запаздывание по времени на 3 секунды обусловлено наличием апериодического звена
При включении режима «возврат» на больших высотах (Н>2000 м) в случае больших отклонений самолета по высоте от траектории снижения (ΔН>500 м) нелинейный блок 8 ограничивает сигнал отклонения самолета по высоте от заданной траектории движения на постоянном уровне 500 м (см. фиг.2), т.е. ΔН*=500 м на протяжении длительного времени. При этом на выходе второго нелинейного блока 9 формируется корректирующий сигнал, равный нулю, который, поступая далее на вход блока перемножения сигналов 11, «обнуляет» сигнал
Учитывая, что
получается, что значение вертикальной скорости самолета равно
Масштабные коэффициенты КΔH и
Как видно из соотношения (5), при выбранных в первом 2 и втором 3 масштабных блоках значениях КΔH и
Уровни ограничения сигнала ΔН* в первом нелинейном блоке 8 выбраны таким образом, что по мере уменьшения высоты, на которой происходит включение режима снижения, уменьшается и вертикальная скорость самолета. Так, при включении режима снижения выше траектории снижения на высоте Н=600 м первый нелинейный блок 8 ограничивает входной сигнал ΔН на постоянном уровне 100 м, т.е. ΔН*=100 м и величина вертикальной скорости самолета при снижении устанавливается на меньшем, чем прежде (50 м/с), уровне:
Таким образом, с помощью первого нелинейного блока 8 ограничивается максимально возможная вертикальная скорость самолета Vy на уровне 50 м/с при включении режима снижения на больших высотах полета и обеспечивается ее уменьшение при включении этого режима на малых высотах (ниже 2000 м).
По мере уменьшения линейного отклонения самолета по высоте от заданной траектории снижения сигнал ΔН* на выходе первого нелинейного блока 8 уменьшается, на выходе второго нелинейного блока 9 появляется постепенно увеличивающийся от нуля до 1 корректирующий сигнал, на выходе блока перемножения сигналов 11 также появляется постепенно возрастающий по величине сигнал
На фиг.3, в качестве иллюстрации, представлен типовой процесс снижения самолета с использованием заявляемой системы автоматического управления самолетом при снижении при следующих начальных условиях: текущая высота полета самолета Н равна 11000 м, скорость полета самолета при снижении V равна 500 м/с, включение режима снижения происходит при ΔН=700 м, удаление от среза взлетно-посадочной полосы (ВПП) составляет 25000 м. Как видно из графиков, полученных математическим моделированием, статическая ошибка стабилизации самолета на траектории снижения отсутствует, снижение самолета обеспечивается строго по заданной прямолинейной траектории.
Отсутствие «параллельного сноса» самолета при снижении в режиме «возврат» подтверждено летными испытаниями заявляемой системы автоматического управления самолетом при снижении.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ СНИЖЕНИИ НА ЭТАПЕ СТАБИЛИЗАЦИИ ВЫСОТЫ КРУГА | 2018 |
|
RU2703378C1 |
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ ЗАХОДЕ НА ПОСАДКУ | 2012 |
|
RU2537201C2 |
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ НАБОРЕ И СТАБИЛИЗАЦИИ ЗАДАННОЙ ВЫСОТЫ ПОЛЕТА | 2016 |
|
RU2619793C1 |
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ БОКОВЫМ ДВИЖЕНИЕМ САМОЛЕТА ПРИ ЗАХОДЕ НА ПОСАДКУ | 2017 |
|
RU2662576C1 |
СПОСОБ УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ ВОЗВРАТЕ НА АЭРОДРОМ В УСЛОВИЯХ ЭКОНОМИИ ТОПЛИВА | 2020 |
|
RU2749167C1 |
УСТРОЙСТВО ФОРМИРОВАНИЯ УПРАВЛЯЮЩИХ СИГНАЛОВ ПРИ СНИЖЕНИИ | 2010 |
|
RU2439499C1 |
СИСТЕМА УПРАВЛЕНИЯ В ПРОДОЛЬНОМ КАНАЛЕ ПИЛОТИРУЕМЫХ И БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В РЕЖИМЕ УВОДА С ОПАСНОЙ ВЫСОТЫ ПРИ РАБОТЕ ПО НАЗЕМНЫМ ОБЪЕКТАМ | 2016 |
|
RU2644048C2 |
СИСТЕМА УПРАВЛЕНИЯ ПИЛОТИРУЕМОГО ЛЕТАТЕЛЬНОГО АППАРАТА С АДАПТИВНОЙ ПЕРЕКРЕСТНОЙ СВЯЗЬЮ | 2019 |
|
RU2736400C1 |
ОГРАНИЧИТЕЛЬ ПРЕДЕЛЬНЫХ РЕЖИМОВ ПОЛЕТА МАНЕВРЕННОГО САМОЛЕТА ПО ПЕРЕГРУЗКЕ | 2019 |
|
RU2711040C1 |
ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА ПОДДЕРЖКИ ЭКИПАЖА | 2013 |
|
RU2541902C2 |
Система автоматического управления самолетом при снижении содержит навигационно-измерительный комплекс, первый и второй масштабные блоки, четыре сумматора, два нелинейных блока, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления (АПУ), руль высоты, рулевой привод. Входы первого нелинейного блока и входы второго и четвертого сумматоров подключены к выходам навигационно-измерительного комплекса. Выход первого нелинейного блока подключен к входам первого масштабного блока, второго нелинейного блока и ко входу третьего сумматора. К третьему сумматору подключены также интегратор, второй сумматор, первый блок перемножения сигналов. К первому блоку перемножения сигналов подключен второй нелинейный блок и четвертый сумматор, выход которого соединен с входом второго масштабного блока. Вход интегратора соединен с выходом второго сумматора. Выход первого сумматора соединен со входом АПУ. Исключается параллельный снос самолета с заданной траектории снижения. 3 ил.
Система автоматического управления самолетом при снижении, содержащая навигационно-измерительный комплекс, на первом выходе которого сформирован сигнал линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал вертикальной скорости самолета, первый и второй масштабные блоки, первый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго масштабных блоков, руль высоты самолета, соединенный с выходом рулевого привода, отличающаяся тем, что с целью повышения безопасности пилотирования и точности стабилизации самолета на траектории снижения система дополнительно содержит первый и второй нелинейные блоки, второй, третий и четвертый сумматоры, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления (АПУ), а навигационно-измерительный комплекс снабжен третьим выходом, на котором формируется сигнал текущей высоты полета самолета, при этом первый и второй входы первого нелинейного блока подключены соответственно к первому и третьему выходам навигационно-измерительного комплекса, второй выход которого соединен с первыми входами второго и четвертого сумматоров, выход первого нелинейного блока подключен к входам первого масштабного блока, второго нелинейного блока и к первому входу третьего сумматора, второй инвертирующий вход которого соединен с выходом интегратора, а выход - со вторым входом второго сумматора и с первым входом блока перемножения сигналов, второй вход которого соединен с выходом второго нелинейного блока, к выходу блока перемножения сигналов подключен второй вход четвертого сумматора, выход которого подключен к входу второго масштабного блока, вход интегратора соединен с выходом второго сумматора, выход первого сумматора, формирующий сигнал заданной вертикальной перегрузки, подключен к входу перегрузочного АПУ, выход которого соединен с входом рулевого привода.
RU 2063906 C1, 20.07.1996 | |||
СПОСОБ АВТОМАТИЧЕСКОЙ ПОСАДКИ САМОЛЕТА | 1992 |
|
RU2025414C1 |
US 8175763 B2, 08.05.2012 |
Авторы
Даты
2015-02-20—Публикация
2014-01-29—Подача