СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ СНИЖЕНИИ Российский патент 2015 года по МПК B64C13/18 

Описание патента на изобретение RU2542686C1

Изобретение относится к области авиационной техники, а именно к системе автоматического управления самолетом в продольной плоскости при его снижении в режиме «возврат» на аэродром.

Логика автоматического управления самолетом при выполнении режима «возврат» состоит в следующем (фиг.1). Задается траектория снижения в виде прямой линии с углом наклона 6° к плоскости горизонта. На первом этапе, когда самолет находится ниже траектории снижения, выполняется режим стабилизации высоты полета. Заданная высота стабилизации устанавливается на уровне 11000 м (номинальное значение), но может выбираться летчиком самостоятельно как выше, так и ниже заданного номинального значения. Высота полета стабилизируется до момента пересечения траектории движения самолета с наклонным участком траектории снижения.

На втором этапе режима «возврат» самолет переводится на наклонный прямолинейный участок заданной траектории снижения, после чего выполняется стабилизация его положения на этой траектории. При достижении самолетом заданной высоты снижения при выполнении режима автоматического захода на посадку (т.н. высоты круга), номинальное значение которой составляет 600 м, осуществляется стабилизация этой высоты до момента включения режима автоматического захода на посадку.

Режим «возврат» может включаться летчиком также на высоте, когда самолет находится выше заданной наклонной траектории снижения (после ее пересечения). В этом случае сразу выполняется приведение самолета на наклонный участок траектории снижения с последующей стабилизацией его положения на этой прямой (без участка стабилизации высоты).

Сигнал ΔН линейного отклонения самолета по высоте от заданной траектории снижения как на участках стабилизации высоты, так и на наклонном участке заданной траектории снижения, формируется с помощью специализированного навигационно-измерительного комплекса. При этом ΔH=H-Hзад, где Н - текущая высота полета самолета, Hзад - заданная высота полета самолета, формируемая прямолинейной траекторией снижения с углом наклона 6°.

Управление самолетом на всех этапах выполнения режима «возврат» осуществляется автоматически путем отработки сигнала nузад заданной вертикальной перегрузки.

К системе автоматического управления самолетом при снижении предъявляются следующие требования:

- при «вписывании» самолета на наклонную прямолинейную траекторию снижения из различных вариантов включения режима «возврат» (в момент пересечения или после пересечения траектории снижения) вертикальная скорость самолета не должна превышать по величине 50 м/сек;

- по мере уменьшения высоты включения режима «возврат» допустимая вертикальная скорость самолета должна снижаться до безопасных, с точки зрения летчика, величин;

- при стабилизации самолета на заданной траектории снижения не должны возникать статические ошибки (ΔН→0).

Известна система автоматической стабилизации заданной высоты полета самолета, использующая в своей работе сигналы угловой скорости тангажа, линейного отклонения и скорости линейного отклонения от заданной высоты (Михалев И.А., Окоемов Б.Н., Павлина И.Г., Чикулаев М.С., Киселев Ю.Ф. Системы автоматического и директорного управления самолетом. М., Машиностроение, 1974, 232 с., рис.2.4, с.40). Ее недостатком является отсутствие контроля за вертикальной скоростью самолета - она может значительно превышать допустимые значения при отработке больших отклонений самолета от заданной высоты.

Другой известной системе автоматической стабилизации заданной высоты полета самолета, использующей в своей работе сигналы угловой скорости тангажа, линейного отклонения от заданной траектории и угла тангажа (Михалев И.А., Окоемов Б.Н., Павлина И.Г., Чикулаев М.С., Киселев Ю.Ф. Системы автоматического и директорного управления самолетом. М., Машиностроение, 1974, 232 с., рис.2.7, с.44), присущ тот же недостаток, а именно возможность превышения допустимой вертикальной скорости при отработке больших отклонений самолета от заданной высоты.

Наиболее близкой к заявляемой системе автоматического управления самолетом при снижении (прототипом) является классическая система управления высотой полета (Боднер В.А. Теория автоматического управления полетом. М., Наука, 1964, 700 с., рис.4.2, с.178). Данная система содержит навигационно-измерительный комплекс, на первом выходе которого формируется сигнал ΔН линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал Vy вертикальной скорости самолета. Также система содержит первый и второй масштабные блоки, входы которых соединены соответственно с первым и вторым выходами навигационно-измерительного комплекса, первый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго масштабных блоков, руль высоты самолета, соединенный с выходом рулевого привода. Кроме того, система-прототип снабжена тангажным автоматом продольного управления (АПУ), вход которого подключен к выходу первого сумматора, а выход - к входу рулевого привода. На выходе первого сумматора формируется командный сигнал ϑзад заданного приращения угла тангажа относительно балансировочного значения, отрабатываемого затем самолетом совместно с тангажным АПУ:

ϑ з а д = К Δ Н Δ Н + К V y V y , ( 1 )

где КΔH - масштабный коэффициент первого масштабного блока,

K V y - масштабный коэффициент второго масштабного блока.

В указанной системе-прототипе после окончания переходных процессов на этапе «вписывания» на заданную траекторию снижения командный сигнал ϑзад на выходе первого сумматора получается равным нулю, а именно: ϑзад=0.

С учетом того, что при этом Vy=-V·Sin6° следует, что в установившемся состоянии

Δ H = V y K V y K Δ H = V S i n 6 ° K V y K Δ H > 0 , ( 2 )

где V - скорость полета самолета при снижении.

Анализ соотношения (2) показывает, что в системе-прототипе всегда будет иметь место методическая ошибка стабилизации самолета на траектории снижения, а именно, снос вверх от этой траектории (ΔН>0), причем тем больший, чем больше скорость полета. Конкретная величина ошибки стабилизации определяется выбранными масштабными коэффициентами КΔH, K V y , скоростью полета самолета и может составлять несколько десятков метров. Факт «параллельного сноса» реальной траектории снижения самолета является серьезным недостатком системы-прототипа, поскольку в этой ситуации летчик затрудняется контролировать пространственное положение самолета при снижении. Он видит, что на пилотажном приборе планка положения самолета относительно заданной траектории снижения отклонена от нулевого положения, т.е. самолет находится выше траектории снижения, и в то же время командный сигнал ϑзад=0, что говорит о том, что летчику не нужно вмешиваться в управление.

Таким образом, основными недостатками системы-прототипа при снижении самолета в режиме «возврат» являются:

- отсутствие контроля за вертикальной скоростью самолета - она может значительно превышать допустимые значения (50 м/с) при отработке больших начальных отклонений самолета от заданной высоты в момент включения режима «возврат»;

- появление больших статических ошибок стабилизации самолета на траектории снижения, а именно, движение самолета при снижении после окончания переходных процессов происходит по прямой, параллельной заданной траектории снижения с превышением линейного отклонения самолета по высоте в несколько десятков метров, т.е. имеет место «параллельный снос» реальной траектории снижения относительно заданной. Конкретное значение возникающих ошибок стабилизации зависит от конкретных значений масштабных коэффициентов в масштабных блоках и от скорости полета самолета. Ошибки тем больше, чем больше скорость полета;

- использование тангажного автомата продольного управления самолетом, которому свойственны невысокие характеристики ветроустойчивости, т.к. известно, что для повышения точности стабилизации самолета на заданной траектории снижения предпочтительно применение перегрузочного автомата продольного управления (см., например, Михалев И.А., Окоемов Б.Н., Чикулаев М.С. Системы автоматической посадки. М., Машиностроение, 1975, 216 с., с.99).

Техническим результатом заявляемой системы автоматического управления самолетом при снижении является повышение точности стабилизации самолета на траектории снижения вследствие исключения статических ошибок стабилизации на заданной траектории снижения и за счет использования перегрузочного АПУ, а также повышение безопасности пилотирования за счет ограничения вертикальной скорости самолета в допустимых пределах (-50 м/с<Vy<+50 м/с).

Технический результат достигается тем, что система автоматического управления самолетом при снижении содержит навигационно-измерительный комплекс, на первом выходе которого формируется сигнал ΔН линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал Vy вертикальной скорости самолета, также система содержит первый и второй масштабные блоки, первый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго масштабных блоков, руль высоты самолета, соединенный с выходом рулевого привода. Дополнительно данная система автоматического управления содержит первый и второй нелинейные блоки, второй, третий и четвертый сумматоры, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления (АПУ), а навигационно-измерительный комплекс снабжен третьим выходом, на котором формируется сигнал Н текущей высоты полета, при этом первый и второй входы первого нелинейного блока подключены соответственно к первому и третьему выходам навигационно-измерительного комплекса, второй выход которого соединен с первыми входами второго и четвертого сумматоров, выход первого нелинейного блока подключен к входам первого масштабного блока, второго нелинейного блока и к первому входу третьего сумматора, второй инвертирующий вход которого соединен с выходом интегратора, а выход - со вторым входом второго сумматора и с первым входом блока перемножения сигналов, второй вход которого соединен с выходом второго нелинейного блока, к выходу блока перемножения сигналов подключен второй вход четвертого сумматора, выход которого подключен к входу второго масштабного блока, вход интегратора соединен с выходом второго сумматора, выход первого сумматора, формирующий сигнал nузад заданной вертикальной перегрузки, подключен к входу перегрузочного АПУ, выход которого соединен с входом рулевого привода.

Таким образом, безопасность пилотирования обеспечивается тем, что вертикальная скорость самолета при снижении ограничивается (на уровне 50 м/с) с помощью первого нелинейного блока, а повышение точности стабилизации самолета на заданной траектории снижения достигается за счет следующих факторов:

- вследствие дополнительно введенных второго, третьего и четвертого сумматоров, интегратора, второго нелинейного блока, блока перемножения сигналов, а также установления новых связей между блоками, на выходе третьего сумматора формируется сигнал Vy0 постоянной составляющей вертикальной скорости, равный по величине и обратный по знаку установившемуся значению вертикальной скорости самолета (Vy)уст при движении самолета по заданной прямолинейной траектории снижения, т.e. Vy0=-(Vy)уст=V·Sin6°;

- на выходе четвертого сумматора при малых отклонениях от заданной траектории снижения (ΔН≤50 м) формируется сигнал ΔVy скорости линейного отклонения самолета по высоте от заданной траектории снижения, равный вертикальной скорости самолета Vy за вычетом компоненты (Vy)уст: ΔVy=Vy-(Vy)уст;

- исключение компоненты (Vy)уст из сигнала Vy вертикальной скорости самолета и последующее использование полученного таким образом сигнала ΔVy, участвующего далее в формировании сигнала nузад заданной вертикальной перегрузки на выходе первого сумматора, позволяет исключить «параллельный снос» самолета при снижении по прямолинейной заданной траектории снижения и, тем самым, повысить точность работы системы управления;

- применение перегрузочного АПУ вместо тангажного АПУ позволяет дополнительно повысить точность работы системы управления за счет снижения динамических ошибок стабилизации самолета на траектории снижения при действии ветровых возмущений в условиях турбулентной атмосферы.

Сущность изобретения поясняется графическими изображениями:

на фиг.1 представлена графическая схема порядка выполнения режима снижения самолета в режиме «возврат» на аэродром;

на фиг.2 изображена заявляемая система автоматического управления самолетом при снижении;

на фиг.3 показан типовой переходный процесс изменения высоты при снижении самолета с предлагаемой системой управления.

На фиг.1-3 использованы следующие обозначения:

1 - навигационно-измерительный комплекс

2, 3 - первый и второй масштабные блоки соответственно

4, 5, 6, 7 - первый, второй, третий и четвертый сумматоры соответственно

8, 9 - первый и второй нелинейные блоки соответственно

10 - интегратор

11 - блок перемножения сигналов

12 - перегрузочный автомат продольного управления (АПУ)

13 - рулевой привод

14 - руль высоты

Vy - вертикальная скорость самолета

Vy0 - сигнал постоянной составляющей вертикальной скорости самолета

V ^ y 0 - сигнал оценки постоянной составляющей вертикальной скорости самолета

ΔVy - сигнал скорости линейного отклонения самолета по высоте от заданной траектории снижения

nузад - сигнал заданной вертикальной перегрузки

Δny - избыточная вертикальная перегрузка

ΔН - сигнал линейного отклонения самолета по высоте от заданной траектории снижения

ΔН* - ограниченный по уровню сигнал линейного отклонения самолета по высоте от заданной траектории снижения

Н - текущая высота полета самолета

Hзад - заданная высота полета самолета

Hкруга - высота круга

КΔH - масштабный коэффициент первого масштабного блока 2

K V y - масштабный коэффициент второго масштабного блока 3

p - оператор дифференцирования

ВПП - взлетно-посадочная полоса

t - время, с.

Система автоматического управления самолетом при снижении (фиг.2) содержит навигационно-измерительный комплекс 1, на первом выходе которого формируется сигнал ΔН линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал Vy вертикальной скорости самолета. Также система содержит первый 2 и второй 3 масштабные блоки, первый сумматор 4, входы которого подключены к выходам первого 2 и второго 3 масштабных блоков, руль высоты 14 самолета, соединенный с выходом рулевого привода 13. Дополнительно система управления содержит первый 8 и второй 9 нелинейные блоки, второй 5, третий 6 и четвертый 7 сумматоры, интегратор 10, блок перемножения сигналов 11, перегрузочный АПУ 12, а навигационно-измерительный комплекс 1 снабжен третьим выходом, на котором формируется сигнал Н текущей высоты полета самолета, при этом первый и второй входы первого нелинейного блока 8 подключены соответственно к первому и третьему выходам навигационно-измерительного комплекса 1, второй выход которого соединен с первыми входами второго 5 и четвертого 7 сумматоров, выход первого нелинейного блока 8 подключен к входам первого масштабного блока 2, второго нелинейного блока 9 и к первому входу третьего сумматора 6, второй инвертирующий вход которого соединен с выходом интегратора 10, а выход - со вторым входом второго сумматора 5 и с первым входом блока перемножения сигналов 11, второй вход которого соединен с выходом второго нелинейного блока 9, к выходу блока перемножения сигналов 11 подключен второй вход четвертого сумматора 7, выход которого подключен к входу второго масштабного блока 3, вход интегратора 10 соединен с выходом второго сумматора 5, выход первого сумматора 4, формирующий сигнал nузад заданной вертикальной перегрузки, подключен к входу перегрузочного АПУ 12, выход которого соединен с входом рулевого привода 13.

Система автоматического управления самолетом при снижении работает следующим образом.

При малых отклонениях самолета от заданной траектории снижения, когда ΔН*=ΔН, на выходе третьего сумматора 6 формируется сигнал Vy0, равный по величине и обратный по знаку установившемуся значению вертикальной скорости самолета (Vy)уст при движении самолета по заданной прямолинейной траектории снижения. Из рассмотрения связей между вторым сумматором 5, интегратором 10 и третьим сумматором 6 (фиг.2) следует, что:

V y 0 = Δ H p p + 1 V y 1 p + 1 = ( H H з а д ) p p + 1 V y 1 p + 1 ,

где р - оператор дифференцирования.

Учитывая, что p H = H ˙ и p H з а д = H ˙ з а д

где H ˙ = d H d t , H ˙ з а д = d H з а д d t ,

а также что H ˙ = V y , H ˙ з а д = ( V y ) з а д = ( V y ) у с т ,

где (Vy)зад - заданное значение вертикальной скорости самолета, получается:

V y 0 = V y 1 p + 1 ( V y ) з а д 1 p + 1 V y 1 p + 1 = ( V y ) з а д 1 p + 1 = ( V y ) у с т 1 p + 1 . ( 3 )

Как следует из (3), при движении самолета строго по наклонной прямолинейной траектории приблизительно через 3 секунды на выходе третьего сумматора 6 устанавливается сигнал Vy0, равный установившемуся значению вертикальной скорости самолета (Vy)уст и обратный ему по знаку. Запаздывание по времени на 3 секунды обусловлено наличием апериодического звена 1 p + 1 .

При включении режима «возврат» на больших высотах (Н>2000 м) в случае больших отклонений самолета по высоте от траектории снижения (ΔН>500 м) нелинейный блок 8 ограничивает сигнал отклонения самолета по высоте от заданной траектории движения на постоянном уровне 500 м (см. фиг.2), т.е. ΔН*=500 м на протяжении длительного времени. При этом на выходе второго нелинейного блока 9 формируется корректирующий сигнал, равный нулю, который, поступая далее на вход блока перемножения сигналов 11, «обнуляет» сигнал V ^ y 0 на втором входе четвертого сумматора 7. За счет этого на вход второго масштабного блока 3 в течение некоторого времени поступает сигнал ΔVy, равный вертикальной скорости самолета Vy, т.е. ΔVy=Vy. Под действием сформированных сигналов ΔН*=500 м и ΔVy=Vy на выходе первого сумматора 4 формируется сигнал nузад заданной вертикальной перегрузки, под действием которого самолет движется в сторону заданной траектории снижения. После завершения переходных процессов «вписывания» на заданную траекторию снижения сигнал Пуча, на выходе первого сумматора 4 становится равным нулю nузад=0.

Учитывая, что

n у з а д = K Δ H Δ H * + K V y V y ,

получается, что значение вертикальной скорости самолета равно

V y = Δ H * K Δ H K V y . ( 4 )

Масштабные коэффициенты КΔH и K V y задаются из условия приемлемых динамических характеристик процессов «вписывания» самолета на траекторию снижения. На практике КΔH=0,003 единиц перегрузки/м, K V y = 0 , 03 единиц перегрузки/м/с, поэтому

V y = Δ H * K Δ H K V y = 500 0 , 003 0 , 03 = 50 м / с . ( 5 )

Как видно из соотношения (5), при выбранных в первом 2 и втором 3 масштабных блоках значениях КΔH и K V y и выбранном уровне ограничения сигнала ΔН до значения ΔН*, обеспечивается необходимое ограничение вертикальной скорости самолета при снижении (по величине не более 50 м/с).

Уровни ограничения сигнала ΔН* в первом нелинейном блоке 8 выбраны таким образом, что по мере уменьшения высоты, на которой происходит включение режима снижения, уменьшается и вертикальная скорость самолета. Так, при включении режима снижения выше траектории снижения на высоте Н=600 м первый нелинейный блок 8 ограничивает входной сигнал ΔН на постоянном уровне 100 м, т.е. ΔН*=100 м и величина вертикальной скорости самолета при снижении устанавливается на меньшем, чем прежде (50 м/с), уровне:

V y = Δ H * K Δ H K V y = 100 0 , 003 0 , 03 = 10 м / с . ( 6 )

Таким образом, с помощью первого нелинейного блока 8 ограничивается максимально возможная вертикальная скорость самолета Vy на уровне 50 м/с при включении режима снижения на больших высотах полета и обеспечивается ее уменьшение при включении этого режима на малых высотах (ниже 2000 м).

По мере уменьшения линейного отклонения самолета по высоте от заданной траектории снижения сигнал ΔН* на выходе первого нелинейного блока 8 уменьшается, на выходе второго нелинейного блока 9 появляется постепенно увеличивающийся от нуля до 1 корректирующий сигнал, на выходе блока перемножения сигналов 11 также появляется постепенно возрастающий по величине сигнал V ^ y 0 оценки постоянной составляющей вертикальной скорости самолета Vy0. В пределе, когда |ΔН*|≤50 м, корректирующий сигнал на выходе второго нелинейного блока 9 становится всегда равным 1. В этой ситуации сигнал V ^ y 0 на выходе блока перемножения сигналов 11 становится равным сигналу Vy0, сформированному на выходе третьего сумматора 6. На выходе четвертого сумматора 7 из сигнала Vy, поступающего на его первый вход из навигационно-измерительного комплекса 1, вычитается сигнал V ^ y 0 , поступающий на второй вход четвертого сумматора 7 с выхода блока перемножения сигналов 11. Учитывая, что V ^ y 0 = V y 0 = ( V y ) у с т и Vy=(Vy)уст+ΔVy, на выходе четвертого сумматора 7 после сложения сигналов V ^ y 0 и Vy формируется сигнал ΔVy скорости линейного отклонения самолета по высоте от заданной траектории снижения. В отличие от прототипа после окончания переходных процессов «вписывания» самолета на заданную траекторию снижения на выходе четвертого сумматора 7 формируется сигнал ΔVy=0, за счет этого сигнал ΔН* также становится равным нулю. Тем самым устраняется «параллельный снос» самолета с траектории снижения, т.е. повышается точность стабилизации самолета на траектории снижения.

На фиг.3, в качестве иллюстрации, представлен типовой процесс снижения самолета с использованием заявляемой системы автоматического управления самолетом при снижении при следующих начальных условиях: текущая высота полета самолета Н равна 11000 м, скорость полета самолета при снижении V равна 500 м/с, включение режима снижения происходит при ΔН=700 м, удаление от среза взлетно-посадочной полосы (ВПП) составляет 25000 м. Как видно из графиков, полученных математическим моделированием, статическая ошибка стабилизации самолета на траектории снижения отсутствует, снижение самолета обеспечивается строго по заданной прямолинейной траектории.

Отсутствие «параллельного сноса» самолета при снижении в режиме «возврат» подтверждено летными испытаниями заявляемой системы автоматического управления самолетом при снижении.

Похожие патенты RU2542686C1

название год авторы номер документа
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ СНИЖЕНИИ НА ЭТАПЕ СТАБИЛИЗАЦИИ ВЫСОТЫ КРУГА 2018
  • Архипкин Юрий Николаевич
  • Евдокимчик Егор Александрович
  • Кабаков Владимир Борисович
  • Казаков Евгений Васильевич
  • Кисин Евгений Николаевич
  • Любжин Игорь Александрович
  • Оболенский Юрий Геннадьевич
  • Орлов Сергей Владимирович
  • Юдис Сергей Романович
RU2703378C1
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ ЗАХОДЕ НА ПОСАДКУ 2012
  • Архипкин Юрий Николаевич
  • Гордеев Александр Викторович
  • Кабаков Владимир Борисович
  • Казаков Евгений Васильевич
  • Кисин Евгений Николаевич
  • Любжин Игорь Александрович
  • Оболенский Юрий Геннадьевич
  • Орлов Сергей Владимирович
  • Парамонов Виктор Николаевич
  • Похваленский Владимир Леонидович
  • Синевич Григорий Михайлович
  • Юдис Сергей Романович
  • Якубович Марк Михайлович
RU2537201C2
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ НАБОРЕ И СТАБИЛИЗАЦИИ ЗАДАННОЙ ВЫСОТЫ ПОЛЕТА 2016
  • Евдокимчик Егор Александрович
  • Кабаков Владимир Борисович
  • Казаков Евгений Васильевич
  • Кисин Евгений Николаевич
  • Любжин Игорь Александрович
  • Оболенский Юрий Геннадьевич
  • Орлов Сергей Владимирович
  • Тышкевич Вячеслав Андреевич
  • Юдис Сергей Романович
RU2619793C1
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ БОКОВЫМ ДВИЖЕНИЕМ САМОЛЕТА ПРИ ЗАХОДЕ НА ПОСАДКУ 2017
  • Евдокимчик Егор Александрович
  • Кабаков Владимир Борисович
  • Казаков Евгений Васильевич
  • Кисин Евгений Николаевич
  • Любжин Игорь Александрович
  • Оболенский Юрий Геннадьевич
  • Орлов Сергей Владимирович
  • Юдис Сергей Романович
RU2662576C1
СПОСОБ УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ ВОЗВРАТЕ НА АЭРОДРОМ В УСЛОВИЯХ ЭКОНОМИИ ТОПЛИВА 2020
  • Евдокимчик Егор Александрович
  • Кабаков Владимир Борисович
  • Казаков Евгений Васильевич
  • Кисин Евгений Николаевич
  • Оболенский Юрий Геннадьевич
  • Орлов Сергей Владимирович
RU2749167C1
УСТРОЙСТВО ФОРМИРОВАНИЯ УПРАВЛЯЮЩИХ СИГНАЛОВ ПРИ СНИЖЕНИИ 2010
  • Никулин Александр Степанович
  • Бойкова Ольга Олеговна
  • Бражник Валерий Михайлович
  • Исмагилова Сания Каримовна
  • Кавинский Владимир Валентинович
  • Мезенцев Илья Александрович
  • Никулина Анна Александровна
  • Орехов Михаил Ильич
  • Семаш Александр Александрович
  • Сухоруков Сергей Яковлевич
RU2439499C1
СИСТЕМА УПРАВЛЕНИЯ В ПРОДОЛЬНОМ КАНАЛЕ ПИЛОТИРУЕМЫХ И БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ В РЕЖИМЕ УВОДА С ОПАСНОЙ ВЫСОТЫ ПРИ РАБОТЕ ПО НАЗЕМНЫМ ОБЪЕКТАМ 2016
  • Михайлин Денис Александрович
  • Синевич Григорий Михайлович
RU2644048C2
СИСТЕМА УПРАВЛЕНИЯ ПИЛОТИРУЕМОГО ЛЕТАТЕЛЬНОГО АППАРАТА С АДАПТИВНОЙ ПЕРЕКРЕСТНОЙ СВЯЗЬЮ 2019
  • Кабаков Владимир Борисович
  • Кисин Евгений Николаевич
  • Левитин Игорь Моисеевич
  • Оболенский Юрий Геннадьевич
  • Орлов Сергей Владимирович
RU2736400C1
ОГРАНИЧИТЕЛЬ ПРЕДЕЛЬНЫХ РЕЖИМОВ ПОЛЕТА МАНЕВРЕННОГО САМОЛЕТА ПО ПЕРЕГРУЗКЕ 2019
  • Кабаков Владимир Борисович
  • Казаков Евгений Васильевич
  • Кисин Евгений Николаевич
  • Левитин Игорь Моисеевич
  • Оболенский Юрий Геннадьевич
  • Орлов Сергей Владимирович
  • Юдис Сергей Романович
RU2711040C1
ИНТЕЛЛЕКТУАЛЬНАЯ СИСТЕМА ПОДДЕРЖКИ ЭКИПАЖА 2013
  • Якушев Анатолий Фёдорович
  • Ясенок Андрей Васильевич
  • Минеев Михаил Иванович
  • Калинин Юрий Иванович
  • Болин Вячеслав Павлович
  • Павленко Юрий Максимович
  • Дрожжина Анна Юрьевна
  • Терновский Сергей Александрович
  • Якушев Вячеслав Анатольевич
  • Мусихина Ольга Анатольевна
  • Фролкина Людмила Вениаминовна
RU2541902C2

Иллюстрации к изобретению RU 2 542 686 C1

Реферат патента 2015 года СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ САМОЛЕТОМ ПРИ СНИЖЕНИИ

Система автоматического управления самолетом при снижении содержит навигационно-измерительный комплекс, первый и второй масштабные блоки, четыре сумматора, два нелинейных блока, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления (АПУ), руль высоты, рулевой привод. Входы первого нелинейного блока и входы второго и четвертого сумматоров подключены к выходам навигационно-измерительного комплекса. Выход первого нелинейного блока подключен к входам первого масштабного блока, второго нелинейного блока и ко входу третьего сумматора. К третьему сумматору подключены также интегратор, второй сумматор, первый блок перемножения сигналов. К первому блоку перемножения сигналов подключен второй нелинейный блок и четвертый сумматор, выход которого соединен с входом второго масштабного блока. Вход интегратора соединен с выходом второго сумматора. Выход первого сумматора соединен со входом АПУ. Исключается параллельный снос самолета с заданной траектории снижения. 3 ил.

Формула изобретения RU 2 542 686 C1

Система автоматического управления самолетом при снижении, содержащая навигационно-измерительный комплекс, на первом выходе которого сформирован сигнал линейного отклонения самолета по высоте от заданной траектории снижения, а на втором - сигнал вертикальной скорости самолета, первый и второй масштабные блоки, первый сумматор, первый и второй входы которого подключены соответственно к выходам первого и второго масштабных блоков, руль высоты самолета, соединенный с выходом рулевого привода, отличающаяся тем, что с целью повышения безопасности пилотирования и точности стабилизации самолета на траектории снижения система дополнительно содержит первый и второй нелинейные блоки, второй, третий и четвертый сумматоры, интегратор, блок перемножения сигналов, перегрузочный автомат продольного управления (АПУ), а навигационно-измерительный комплекс снабжен третьим выходом, на котором формируется сигнал текущей высоты полета самолета, при этом первый и второй входы первого нелинейного блока подключены соответственно к первому и третьему выходам навигационно-измерительного комплекса, второй выход которого соединен с первыми входами второго и четвертого сумматоров, выход первого нелинейного блока подключен к входам первого масштабного блока, второго нелинейного блока и к первому входу третьего сумматора, второй инвертирующий вход которого соединен с выходом интегратора, а выход - со вторым входом второго сумматора и с первым входом блока перемножения сигналов, второй вход которого соединен с выходом второго нелинейного блока, к выходу блока перемножения сигналов подключен второй вход четвертого сумматора, выход которого подключен к входу второго масштабного блока, вход интегратора соединен с выходом второго сумматора, выход первого сумматора, формирующий сигнал заданной вертикальной перегрузки, подключен к входу перегрузочного АПУ, выход которого соединен с входом рулевого привода.

Документы, цитированные в отчете о поиске Патент 2015 года RU2542686C1

RU 2063906 C1, 20.07.1996
СПОСОБ АВТОМАТИЧЕСКОЙ ПОСАДКИ САМОЛЕТА 1992
  • Баныкин И.Ф.
  • Глот В.Н.
  • Луняков В.С.
  • Савельев П.А.
  • Скорова И.Б.
  • Тетсман А.К.
  • Харьков В.П.
  • Якушев А.Ф.
RU2025414C1
US 8175763 B2, 08.05.2012

RU 2 542 686 C1

Авторы

Архипкин Юрий Николаевич

Гордеев Александр Викторович

Кабаков Владимир Борисович

Казаков Евгений Васильевич

Кисин Евгений Николаевич

Оболенский Юрий Геннадьевич

Орлов Сергей Владимирович

Похваленский Владимир Леонидович

Юдис Сергей Романович

Даты

2015-02-20Публикация

2014-01-29Подача