Изобретение относится к резиновой промышленности, в частности к резиновой смеси на основе фторкаучука, и может быть использовано для изготовления колец, прокладок и других уплотнительных деталей, работающих в агрессивных средах при повышенных температурах.
Известна вулканизуемая резиновая смесь на основе фторкаучука, содержащая, мас.ч.: СКФ-26 - 100; оксид магния - 10; белую сажу - 30; перекись бензоила - 3 (Справочник резинщика. - М., 1971, с.154-155).
Однако такая резиновая смесь прилипает к пресс-форме в процессе вулканизации, а вулканизаты, несмотря на высокую термостабильность, имеют невысокие физико-механические показатели.
Известна вулканизуемая резиновая смесь на основе фторкаучука, включающая, мас.ч.: СКФ-26 - 100; оксид магния - 15; печную сажу - 30; гексаметилендиамин - 3 (Справочник резинщика. - М., 1971, с.154-155).
Однако вулканизаты резиновых смесей с гексаметилендиамином дают низкие физико-механические показатели.
Известна вулканизуемая резиновая смесь на основе фторкаучука, содержащая, мас.ч.: СКФ-26 - 100; оксид магния - 6; сульфат бария - 26; гидроокись кальция - 5; наполнитель Т-900 - 20; ди-(4-оксифенил)диметилметан (бисфенол) - 1; трифенилбензилфосфонийхлорид -0,4; диспергатор (анилидперфторпеларгоновая кислота) - 0,15 (Пат. РФ №2199560, МПК C08L 27/20, опубл. 27.02.03).
Известна вулканизуемая резиновая смесь на основе фторкаучука, включающая, мас.ч.: СКФ-26 - 100; оксид магния - 13; сульфат бария - 20; гидроокись кальция - 1; фторид кальция - 15; резорцин - 0,6; триэтилбензиламмоний хлористый - 0,3 (Пат. РФ №2215758, МПК C08L 27/16, опубл. 10.11.03).
Однако резиновые смеси с бисфенолами и двухатомными фенолами (в частности, с резорцином) склонны к подвулканизации и при хранении теряют пластичность.
Наиболее близкой к заявляемой вулканизуемой резиновой смеси является резиновая смесь на основе фторкаучука, содержащая, мас.ч.: СКФ-26 - 100; оксид магния - 15; печную сажу (ТУ П-803) - 15; основание Шиффа бис-фурилиденгексаметилендиимин (бифургин) - 5 (Справочник резинщика. - М., 1971, с.154-155; ГОСТ 18376-79).
Однако такая резиновая смесь имеет склонность к подвулканизации, нестабильна при хранении и прилипает к пресс-форме в процессе вулканизации.
Техническим результатом является разработка вулканизуемой резиновой смеси на основе фторкаучука, обладающей низкой вязкостью и высокой скоростью структурирования при сохранении физико-механических показателей вулканизатов.
Поставленный технический результат достигается использованием вулканизуемой резиновой смеси на основе фторкаучука СКФ-26, включающей вулканизующий агент - бифургин, активатор вулканизации - оксид магния и наполнитель - технический углерод П-803, при этом дополнительно содержащей магниевую лактамсодержащую комплексную соль в количестве 3 мас.ч. на 100 мас.ч. каучука, полученную взаимодействием оксида магния с ε-капролактамом в расплаве ε-капролактама с салициловой кислотой при температуре 80-150°C в течение 90-120 мин при мольном соотношении компонентов:
MgO - 1
ε-капролактам - 2
салициловая кислота - 2.
Для получения магниевой лактамсодержащей комплексной соли используют ε-капролактам по ГОСТ 7850-86, оксид магния по ГОСТ 4526-75 и салициловую кислоту по ГОСТ 624-70.
Температурный интервал выбран исходя из следующих соображений. Нижняя температура характеризует температуру плавления исходных веществ: температура плавления ε-капролактама 68°С, салициловой кислоты - 159°С. Их бинарный расплав при указанном в заявляемом материале соотношении жидкий только при 80°С. Верхний предел ограничивается температурой 150°С, выше которой начинается интенсивное газовыделение. Время синтеза определяли по окончанию газовыделения (паров H2O) из расплава.
Предпочтительной является температура синтеза 125°С. При температуре ниже 80°С возможно присутствие влаги, а при температуре выше 150°С ε-капролактам улетучивается из сферы реакции. Таким образом, данная температура освобождает систему от влаги, сохраняя ε-капролактам для последующего его вхождения в лигандную сферу.
Способ получения магниевой лактамсодержащей комплексной соли осуществляют следующим образом.
Пример 1. В реактор с мешалкой при температуре 80°С загружают 113 г ε-капролактама; после плавления ε-капролактама небольшими порциями при перемешивании добавляют 138 г салициловой кислоты. После гомогенизации бинарного сплава вводят 20 г предварительно просеянного через сито (160 мкм) оксида магния. Синтез магниевой лактамсодержащей комплексной соли происходит при постоянном перемешивании и температуре 80°С в течение 90-120 мин.
Пример 2. Способ получения магниевой лактамсодержащей комплексной соли осуществляют аналогично примеру 1 при температуре 125°С.
Пример 3. Способ получения магниевой лактамсодержащей комплексной соли осуществляют аналогично примеру 1 при температуре 150°С.
На образование комплексного соединения прежде всего указывает появление окраски при синтезе магниевой лактамсодержащей комплексной соли. В начале процесса оксид магния, попадая в прозрачный расплав ε-капролактама с салициловой кислотой, вызывает изменение его окраски. Таким образом, магниевым лактамсодержащим комплексным солям свойственна термохромность: при 80°С магниевая лактамсодержащая комплексная соль имеет бледно фиолетовую окраску; при 125°С она становится более интенсивной, приобретая насыщенный фиолетовый цвет, а при 150°С соль становится темно-фиолетовой.
На фигуре изображены кривые дифференциального термического анализа (ДТА) и дифференциально-термогравиметрического анализа (ДТГ).
Кривая ДТА свидетельствует о том, что ε-капролактам входит в лигандную сферу комплексных соединений при температуре синтеза 80-150°С. В противном случае, если предположить существование трехкомпонентной системы в виде механической смеси, на кривых ДТА появился бы эндотермический пик плавления ε-капролактама (68°С).
Судя по тому, что на участке кривой ДТА от 20 до 200°С нет явных пиков, свидетельствующих о протекании тепловых эффектов, можно предположить, что в этом температурном интервале комплексы, полученные при 80-150°С, достаточно устойчивы. Разложение комплексов, синтезированных в заявляемом температурном интервале с одновременной значительной потерей массы, судя по кривой ДТГ, начинается только при 200°С. Разложение комплекса приводит к высвобождению функциональных составляющих и при температуре термостатирования вулканизатов фторкаучука, равной 200°С, должно способствовать дополнительному сшиванию макромолекул эластомера.
ИК спектры характеризуются смещением частоты валентных колебаний (ν) карбонильной группы в сторону меньших частот. Так, для продуктов, полученных при 80, 125 и 150°С ν соответственно равны: 1626 см-1, 1626 см-1 и 1622 см-1, в то время как для ε-капролактама из данных монографии [Р. Сильверстейн, Г. Басслер, Т. Моррил Спектрометрическая идентификация органических соединений, Москва, 1977 г., с.195] ν равна 1650 см-1.
Нельзя исключить возможность присутствия во внешней координационной сфере ε-капролактама за счет NH-групп. Как и для валентных колебаний карбонильных групп, для деформационных колебаний NH-групп ε-капролактама также характерно смещение характеристических полос в низкочастотную область: так в спектрах некоторых лактамов [Р. Сильверстейн, Г. Басслер, Т. Морил. Спектрометрическая идентификация органических соединений, Москва, 1977 г., с.193] деформационные колебания NH-групп наблюдаются в области 1650-1515 см-1; в синтезированных продуктах деформационные колебания NH-групп для 80°С, 125°С и 150°С соответствуют частотам 1461, 1484, 1462 см-1.
Таким образом, координация NH- и СО- групп предполагает бидентантый характер вхождения ε-капролактама в лигандную сферу. Поэтому можно представить следующую структурную формулу полученной магниевой лактамсодержащей комплексной соли:
[Mg(C6H11NO)2](C7H6O3)2.
Резиновые смеси содержат фторкаучук СКФ-26 ГОСТ 18376-79, вулканизующий агент - бифургин ТУ 2491-409-05763441-2005; активатор вулканизации - оксид магния ГОСТ 4526-75, технический углерод П-803 ГОСТ 7885-86 (контрольная смесь); в опытных смесях, кроме указанных ингредиентов, дополнительно содержится магниевая лактамсодержащая комплексная соль [Mg(C6H11NO)2](C7H6O3)2.
Составы контрольной и опытных смесей представлены в таблице 1.
Резиновые смеси готовили на лабораторных вальцах по обычной технологии; вулканизовали при температуре 165°С, контрольную - 40 мин, опытные - 30 мин (исходя из данных реометрических испытаний, представленных в табл.2 - время достижения оптимума вулканизации).
Основным положительным фактором является снижение вязкости опытных резиновых смесей (исходя из минимального крутящего момента), что особенно важно для их реализации в условиях изготовления деталей литьем под давлением.
Из приведенных в табл.2 данных видно, что скорость вулканизации резиновых смесей, содержащих магниевую лактамсодержащую комплексную соль, выше скорости вулканизации контрольной резиновой смеси. Влияние магниевой лактамсодержащей комплексной соли не прекращается в процессе термостатирования - при температуре 200°С, когда начинается ее разложение. При этом высвобождаются функциональные группы, что должно было бы способствовать дополнительному сшиванию макромолекул эластомера. Однако, как оказалось, влияние магниевой лактамсодержащей комплексной соли на модули и прочностные свойства вулканизатов не столь существенно. Об этом свидетельствуют данные физико-механических испытаний вулканизатов резиновых смесей (табл.3, ГОСТ 270-75).
Из табл.3 видно, что физико-механические показатели вулканизатов опытных резиновых смесей укладываются в нормированные значения показателей. Поэтому технический результат можно считать достигнутым: разработана вулканизуемая резиновая смесь на основе фторкаучука, обладающая низкой вязкостью и высокой скоростью структурирования при сохранении физико-механических показателей вулканизатов.
название | год | авторы | номер документа |
---|---|---|---|
МАГНИЕВАЯ ЛАКТАМСОДЕРЖАЩАЯ КОМПЛЕКСНАЯ СОЛЬ В КАЧЕСТВЕ ВУЛКАНИЗУЮЩЕГО АГЕНТА ДЛЯ ФТОРКАУЧУКОВ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2013 |
|
RU2528846C1 |
Вулканизуемая резиновая смесь на основе фторкаучука | 2017 |
|
RU2656496C1 |
Вулканизуемая резиновая смесь на основе фторкаучука СКФ-26 | 2020 |
|
RU2743699C1 |
Резиновая смесь на основе фторкаучука СКФ-26 | 2019 |
|
RU2725238C1 |
Вулканизуемая резиновая смесь для изготовления светлых резин | 2016 |
|
RU2620060C1 |
Вулканизуемая резиновая смесь для изготовления светлых резин | 2016 |
|
RU2620059C1 |
КОМПЛЕКСНЫЙ ПРОТИВОСТАРИТЕЛЬ ДЛЯ РЕЗИН | 2016 |
|
RU2620058C1 |
КОМПЛЕКСНЫЙ ПРОТИВОСТАРИТЕЛЬ ДЛЯ РЕЗИН | 2013 |
|
RU2531200C1 |
КОМПЛЕКСНЫЙ ПРОТИВОСТАРИТЕЛЬ ДЛЯ РЕЗИН | 2013 |
|
RU2528673C1 |
ВУЛКАНИЗУЕМАЯ РЕЗИНОВАЯ СМЕСЬ | 2010 |
|
RU2443730C1 |
Изобретение относится к резиновой промышленности, в частности к резиновой смеси на основе фторкаучука, и может быть использовано для изготовления колец, прокладок и других уплотнительных деталей, работающих в агрессивных средах при повышенных температурах. Вулканизуемая резиновая смесь на основе фторкаучука СКФ 26 включает вулканизующий агент - бифургин, активатор вулканизации - оксид магния, наполнитель - технический углерод П-803 и дополнительно магниевую лактамсодержащую комплексную соль в количестве 3 мас.ч. на 100 мас.ч. каучука, полученную взаимодействием оксида магния с ε-капролактамом в расплаве ε-капролактама с салициловой кислотой при температуре 80-150°C в течение 90-120 мин при мольном соотношении компонентов: MgO - 1, ε-капролактам - 2, салициловая кислота - 2. Изобретение обеспечивает низкую вязкостью и высокую скоростью структурирования смеси на основе фторкаучука при сохранении физико-механических показателей вулканизатов. 3 пр., 3 табл., 1 ил.
Вулканизуемая резиновая смесь на основе фторкаучука СКФ-26, включающая вулканизующий агент - бифургин, активатор вулканизации - оксид магния и наполнитель - технический углерод П-803, отличающаяся тем, что дополнительно содержит магниевую лактамсодержащую комплексную соль в количестве 3 мас.ч. на 100 мас.ч. каучука, полученную взаимодействием оксида магния с ε-капролактамом в расплаве ε-капролактама с салициловой кислотой при температуре 80-150°C в течение 90-120 мин при мольном соотношении компонентов:
ПУЧКОВ А.Ф | |||
и др., СТРУКТУРИРОВАНИЕ ФТОРКАУЧУКОВ | |||
КОМПЛЕКСАМИ ε;-КАПРОЛАКТАМА, МЕЖДУНАРОДНЫЙ ЖУРНАЛ ПРИКЛАДНЫХ И ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ, 2012, N1, стр.182-183 | |||
Резиновая смесь | 1990 |
|
SU1754740A1 |
Вулканизуемая резиновая смесь | 1981 |
|
SU1024480A1 |
Авторы
Даты
2015-02-27—Публикация
2013-03-28—Подача