СПОСОБ ОЦЕНКИ РАЗЛИЧИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ВИДИМОЙ ПОВЕРХНОСТИ ИЗОТРОПНОГО ОБЪЕКТА С УЧЕТОМ ФОНА Российский патент 2015 года по МПК G01N25/18 

Описание патента на изобретение RU2544894C1

Предлагаемое изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов, в том числе с не плоской поверхностью, методом активного теплового неразрушающего контроля, заключающимся в измерении пространственного распределения теплофизических параметров по всей видимой поверхности исследуемого изотропного объекта и фона путем дистанционного измерения тепловизионным приемником радиационной температуры во всех точках пространственной сетки зондируемой поверхности круговой развертки исследуемого изотропного объекта и фона (плоского эталонного изотропного материала), равномерно нагретой путем воздействия источника инфракрасного излучения.

Известен способ определения температуропроводности материалов, заключающийся в том, что исследуемый образец нагревают точечным источником тепла постоянной мощности, измеряют температуру поверхности образца датчиком температуры при взаимном относительном перемещении по прямой линии образца и датчика, жестко связанного с источником тепла, измеряют амплитудное значение импульсного сигнала датчика, определяют скорость перемещения источника тепла и зависимости координат точки визирования датчика от времени (авторское свидетельство СССР №1695203, МПК5 G01N 25/18, 30.11.1991).

Недостатком этого способа является значительная методическая погрешность измерения теплофизических параметров, связанная с использованием в математической модели упрощенных тепловых моделей рассматриваемых физических процессов.

Известен наиболее близкий к данному техническому решению способ идентификации скрытых подповерхностных объектов в грунте (патент РФ №2395074 С2, МПК G01N 25/18 (2006.01), 20.07.2010), заключающийся в том, что осуществляют тепловое воздействие от инфракрасного источника нагрева на поверхность грунта, измеряют радиационную температуру на поверхности грунта, рассчитывают математическую модель прямой задачи теплопроводности на основе метода конечных разностей, при этом производят измерение радиационной температуры во всех точках пространственной сетки зондируемой (исследуемой) поверхности при нагреве грунта в течение 90 с и последующем остывании в течение 90 с и применяют для восстановления температурного поля по глубине прогрева одномерную промежуточную сеточную функцию источника нагрева на поверхности грунта.

Недостатком данного способа является низкая точность измерения теплофизических параметров (температуропроводности и теплопроводности), ограниченная площадь зондируемой поверхности грунта, определяемая растром изображения тепловизионного приемника, а также большие вычислительные затраты (длительное время вычисления искомых значений теплофизических параметров), связанные с применением в используемых математических моделях разностных аппроксимаций построенных на основе явных схем.

Задачей предлагаемого изобретения является получение оценки различия теплофизических параметров исследуемого объекта относительно фона в инфракрасном диапазоне длин волн в автоматическом режиме без использования традиционного метода экспертных оценок, уменьшение методической погрешности измерения пространственного распределения теплофизических параметров исследуемого изотропного объекта на основе применения в качестве фона эталонного изотропного материала, получение круговой развертки1 исследуемого изотропного объекта и фона в спектре инфракрасного излучения, уменьшение вычислительных затрат путем использования неявных разностных схем.

Техническим результатом изобретения является получение оценки различия теплофизических параметров исследуемого объекта относительно фона в инфракрасном диапазоне длин волн в автоматическом режиме без использования традиционного метода экспертных оценок, повышение точности измерения пространственного распределения теплофизических параметров исследуемого изотропного объекта (в том числе с не плоской поверхностью), сокращение времени вычисления искомых значений теплофизических параметров.

Поставленный технический результат достигается тем, что в способе оценки различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта, измерение тепловизионным приемником радиационную температуру во всех точках пространственной сетки зондируемой поверхности исследуемого изотропного объекта и расчет математической модели прямой задачи теплопроводности на основе метода конечных разностей, при этом размещают исследуемый изотропного объект на эталонном изотропном материале - фоне, осуществляют тепловое воздействие инфракрасным источником нагрева по всей видимой поверхности исследуемого изотропного объекта и фона, располагают тепловизионный приемник на заданном расстоянии d от оси геометрического центра исследуемого объекта под малым углом наклона относительно фона и совершают тепловизионным приемником круговое движение с постоянной скоростью относительно геометрического центра исследуемого изотропного объекта либо тепловизионный приемник, размещают неподвижно на заданном расстоянии d от оси геометрического центра исследуемого изотропного объекта под малым углом наклона относительно фона, осуществляя вращения с постоянной скоростью исследуемого - изотропного объекта и фона относительно оси поворотной конструкции, на которой они расположены, при этом, перед началом проведения измерения радиационную температуру измеряют на поверхности эталонного материала с известными теплофизическими параметрами в одной точке, затем радиационные температуры с заданной периодичностью измеряют во всех точках пространственной сетки зондируемой поверхности исследуемого изотропного объекта и фона, формируют набор термограмм - круговых разверток радиационных инфракрасных изображений объекта и фона, полученных в разные моменты времени, применяют разностную модель с использованием неявных схем:

{ T 0 k = T 1 k + 1 λ ( Δ x 1 2 + 2 a ) + 2 E a Δ x 1 Δ τ λ Δ x 1 2 2 T 0 k + 1 a Δ τ ( λ + α ) λ Δ x 1 2 T 1 k = 2 a Δ τ ( Δ x 1 + Δ x ) Δ x 1 T 0 k + 1 ( 2 a Δ τ Δ x 1 Δ x + 1 ) T 1 k + 1 + 2 a Δ τ ( Δ x 1 + Δ x ) Δ x T 2 k + 1 T 2 k = a Δ τ Δ x 2 T 1 k + 1 ( 2 a Δ τ Δ x 2 + 1 ) T 2 k + 1 + a Δ τ Δ x 2 T 3 k + 1 , ........ T M 3 k = a Δ τ Δ x 2 T M 2 k + 1 ( 2 a Δ τ Δ x 2 + 1 ) T M 1 k + 1 + a Δ τ Δ x 2 T M k + 1 ,

получают на основании численного решения данной системы уравнений дискретную функцию зависимости температуры на поверхности исследуемого объекта и фона от времени

T 0 k = T i . j [ Δ τ k ] ,

решают оптимизационную параметрическую задачу для эталонного изотропного материала

{ J [ k : E , α ] = k = 0 K ( T [ a Ф , λ Ф , β , Δ τ , Δ x , ε , k , m , d : E α ] T ˜ Ф [ Δ τ k ] ) 2 } min E , α ;

находят из минимума невязки численные оценки E ^ и α ^ ; решают оптимизационную параметрическую задачу для исследуемого изотропного объекта в каждой точке пространственной сетки круговой развертки исследуемого изотропного объекта и фона в соответствии с растром изображения:

{ J i , j [ k : a , λ ] = k = 0 K ( T i , j [ E ^ , α ^ , β , Δ τ , Δ x , ε , k , m : a , λ ] T ˜ i , j [ Δ τ k ] ) 2 } min a , λ ;

определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта a ^ и λ ^ ,

осуществляют автоматическую оценку различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона путем сравнения теплофизических параметров этого объекта и фона и определения зоны необнаружения, исходя из вероятности нераспознавания объекта относительно фона при помощи выражения:

( 1 + ξ ) > λ λ Ф ( 1 ξ ) .

a - температуропроводность исследуемого изотропного объекта;

λ - теплопроводность исследуемого изотропного объекта;

a Ф - температуропроводность эталонного изотропного материала;

λФ - теплопроводность эталонного изотропного материала;

a - оцененное значение температуропроводности исследуемого изотропного объекта;

λ - оцененное значение теплопроводности исследуемого изотропного объекта;

β - коэффициент релаксации;

T m k - сеточная функция;

ε - коэффициент излучения;

k - номер отсчета для сеточной функции по времени, где k [ 0 , K ¯ ] ;

m - номер отсчета для сеточной функции по пространству, где m [ 0 , M ¯ ] ;

Δτ - шаг сетки по времени;

Δx, Δx1 - шаг сетки по расстоянию;

Е - плотность теплового потока от инфракрасного источника нагрева, отнесенная к единице площади пространственной сетки;

α - коэффициент теплоотдачи, отнесенный к единице площади поперечного сечения пространственной сетки;

Ji,j - функционал невязки;

T ˜ i , j - значение разности радиационной температуры исследуемого изотропного объекта по отношению к температуре окружающей среды, полученное для каждой точки зондируемой поверхности круговой развертки исследуемого изотропного объекта и фона в соответствии с растром изображения;

i, j - номера отсчетов пространственной сетки видимой поверхности изотропного объекта и фона, где i [ 0 , I ¯ ] , j [ 0 , J ¯ ] ;

I×J-растр изображения;

T i , j [ E , α , β , Δ τ , Δ x , ε , k , m ] - значение разности температур, рассчитанное дискретной математической моделью, с учетом исследуемого изотропного объекта;

T ˜ Ф - значение разности радиационной температуры фона (эталонный изотропный материал), измеренной тепловизионным приемником, по отношению к температуре окружающей среды;

E ^ - оцененное значение коэффициента теплового потока;

α ^ - оцененное значение коэффициента теплоотдачи;

d - заданное расстояние между тепловизионным приемником и исследуемым объектом;

ξ - предельное отклонение яркости объекта от яркости фона на изображение тепловой томограммы, при котором этот объект неразличим, ξ [ 0 , 1 ¯ ] .

Сущность изобретения заключается в следующем.

При помощи средств инфракрасной (ИК) термографии измеряют радиационные температуры по всей видимой поверхности объекта с заданной периодичностью. Получают круговую развертку объекта в спектре инфракрасного излучения, формируя кубоид ИК-изображений (фиг.3). Данный физический процесс в одномерном пространстве можно описать математической моделью нелинейной задачи теплопроводности (1) с учетом теплообмена исследуемого изотропного объекта с окружающей средой:

T ( x , τ ) τ = x ( a ( T ) T ( x , τ ) x ) ; ( 4 )

T ( x , 0 ) = 0 , T ( ± , τ ) 0

граничные условия на поверхности исследуемого изотропного объекта и фона (эталонный изотропный материал):

λ ( T ) T x | 0 a T n = q ( τ ) h ( τ ) , ( 5 )

где Tn - температура поверхности исследуемого изотропного объекта и фона, h(τ) - ступенчатая функция, q(τ) - тепловой поток, а - коэффициент температуропроводности, λ(τ) - нелинейная функция теплопроводности. Нелинейную задачу теплопроводности (4) при граничных условиях (5) решают методом конечных разностей. Система уравнений, аппроксимирующая неоднородное дифференциальное уравнение (4) и граничные условия (5), на основе использования неявных разностных схем будет иметь вид (1). Граничные условия аппроксимируют на основании выражения полученного с помощью метода теплового баланса:

λ T 1 k T 2 k h α T 1 k = q k + λ 2 a T 1 k + 1 T 2 k Δ τ , ( 6 )

где λ - коэффициент теплопроводности, α - коэффициент теплоотдачи, а -коэффициент температуропроводности, h - ступенчатая функция, k - номер отсчета для сеточной функции по времени, Т - значение радиационной температуры исследуемого изотропного объекта и фона. При этом Е и α(формулы (1), (2)) отнесены к единице площади поперечного сечения пространственной сетки и выражены в Вт/м2 и Дж/(м2·K).

Сущность изобретения поясняется чертежами.

На фиг.1 представлена схема получения круговой развертки исследуемого изотропного объекта и фона, на которой тепловизионный приемник расположен на заданном расстоянии d от оси геометрического центра исследуемого объекта Y под малым углом наклона φ относительно фона и при условии кругового движения тепловизионного приемника относительно оси геометрического центра исследуемого изотропного объекта Y;

На фиг.2 представлена схема получения круговой развертки исследуемого изотропного объекта и фона, на которой тепловизионный приемник расположен на заданном расстоянии d от оси геометрического центра исследуемого изотропного объекта Y под малым углом наклона φ относительно фона и при условии кругового движения исследуемого изотропного объекта и фона относительно оси поворотной конструкции Y, на которой они расположены.

На фиг.1 и фиг.2 обозначено:

1 - поток ИК излучения;

2 - фон (эталонный изотропный материал);

3 - исследуемый изотропный объект;

4 - тепловизионный приемник;

5 - специальная поворотная конструкция (фиг.2);

d - расстояние между тепловизионным приемником и исследуемым изотропным объектом;

φ- угол наклона тепловизионного приемника относительно фона;

υ - скорость кругового движения тепловизионного приемника либо специальной поворотной конструкции.

На фиг.3 представлена блок-схема устройства реализующая способ измерения пространственного распределения теплофизических параметров по всей площади исследуемого изотропного объекта, где:

6 - запоминающее устройство;

7 - блок формирования развертки ИК-изображения;

8 - вычислительное устройство;

9 - блок формирования математической модели процесса остывания поверхности исследуемого изотропного объекта и фона (эталонного изотропного материала);

10 - блок вычислителя квадратичного отклонения;

11 - блок решения двухпараметрической оптимизационной задачи;

12 - блок вычисления коэффициента различия теплофизических параметров фона от теплофизических параметров исследуемого изотропного объекта.

На фиг.4 представлена диаграмма вероятностей необнаружения исследуемого изотропного объекта относительно фона в соответствии с углом обзора.

На фиг.5 представлена диаграмма распределения отношений теплофизических параметров исследуемого изотропного объекта и фона в зависимости от угла обзора с обозначенной зоной необнаружения этого объекта на заданном фоне.

Способ осуществляется следующим образом.

Размещают исследуемый изотропный объект 3 на эталонном изотропном материале (фоне) 2. Осуществляют тепловое воздействие от ИК источника нагрева 1 по всей видимой поверхности исследуемого изотропного объекта 3 и фона (эталонного изотропного материала) 2. Тепловизионный приемник 4 располагают на заданном расстоянии d от оси геометрического центра исследуемого объекта Y под малым углом наклона φ относительно фона (фиг.1). Тепловизионным приемником 4 совершают круговое движение с постоянной скоростью υ относительно геометрического центра исследуемого изотропного объекта Y, тем самым получают круговую развертку объекта 3 и фона 2 в инфракрасном диапазоне длин волн. Либо тепловизионный приемник 4 располагают неподвижно (фиг.2) на заданном расстоянии d от оси геометрического центра исследуемого изотропного объекта Y под малым углом наклона φ относительно фона 2. Специальной поворотной конструкцией 5, на которой расположены исследуемый изотропный объект 3 с эталонным изотропным материалом 2, совершают вращение с постоянной скоростью υ относительно геометрического центра исследуемого объекта Y, получая круговую развертку объекта 3 и фона 2 в инфракрасном диапазоне длин волн.

На выходе тепловизионного приемника 4 (фиг.3) формируется кубоид ИК-изображений, поступающий на вход запоминающего устройства 6. В устройстве 7 из кубоида ИК-изображений формируется развертка ИК-изображения путем построчной записи в файл и поступает на вычислительное устройство 8, где производится вычисление разности температур поверхности исследуемого изотропного объекта 3 относительно температуры окружающей среды. Блок 10 выполняет функцию вычисления квадратичного отклонения значений параметров математической модели, формируемых в блоке математической модели 9 от значений параметров, измеренных тепловизионным приемником 1. Блок 11 осуществляет решение двухпараметрической оптимизационной задачи с выводом матриц пространственного распределения оцененных значений теплофизических параметров a ^ и λ ^ . Блок 12 предназначен для вычисления коэффициента различия теплофизических параметров фона 2 (эталонного материала) от теплофизических параметров исследуемого изотропного объекта 3.

Перед началом проведения измерения, радиационную температуру измеряют на поверхности фона 2 - эталонного материала, с известными теплофизическими параметрами в одной точке, после чего определяют численные оценки значений коэффициента теплоотдачи и плотности теплового потока (2). После этого, в процессе проведения измерения, радиационные температуры измеряют на поверхности исследуемого изотропного объекта 3 и фона 2 во всех точках пространственного разрешения круговой развертки с заданной периодичностью. Численные оценки значений теплофизических параметров во всех точках пространственного разрешения круговой развертки объекта 3 и фона 2 в разные моменты времени получают путем решения коэффициентной обратной задачи теплопроводности на основе построенной разностной математической модели (1).

Оценку различия теплофизических параметров исследуемого изотропного объекта относительно фона, на котором этот объект расположен, по изображениям тепловых томограмм осуществляют при помощи формулы:

P ¯ j = ( 1 i = 1 N p i j N ) , ( 7 )

где P ¯ j - вероятность нераспознавания объектов по изображению тепловой томограммы для у-го угла обзора (фиг.4), где j [ 0 , 360 ¯ ] ; pij- частная оценка распознавания объекта на изображении тепловой томограммы i экспертом для j-го угла обзора, p i [ 0 , 1 ¯ ] ; N- количество экспертов.

Автоматическая оценка различия теплофизических параметров исследуемого изотропного объекта относительно фона осуществляется путем сравнения теплофизических параметров этого объекта и фона (фиг.5) и определения зоны необнаружения исходя из вероятности нераспознавания объекта относительно фона (фиг.4) при помощи выражения:

( 1 + ξ ) > λ λ Ф ( 1 ξ ) ( 8 )

где ξ - предельное отклонение яркости объекта от яркости фона на изображение тепловой томограммы, при котором этот объект неразличим, ξ [ 0 , 1 ¯ ] .

Таким образом, способ измерения пространственного распределения теплофизических параметров осуществляют в 2 этапа.

Первый этап заключается в оценке неизвестных параметров математической модели на основе использования эталонного изотропного материала.

Второй этап заключается в оценке теплофизических параметров во всех точках зондируемой поверхности круговой развертки исследуемого изотропного объекта и фона (эталонного изотропного материала), нагретых источником ИК излучения. Для этого формируют набор круговых разверток исследуемого изотропного объекта и фона в ИК диапазоне длин волн, полученных тепловизионным приемником с периодичностью, обеспечивающей максимальное качество получаемого изображения.

Решают оптимизационную параметрическую задачу (3) для исследуемого изотропного объекта и фона в каждой точке зондируемой поверхности круговой развертки исследуемого изотропного объекта и фона, в результате чего получают пространственное распределение оцененных значений теплофизических параметров исследуемого изотропного объекта и фона:

температуропроводности

a ^ = [ a ^ i , j a ^ i , J a ^ I , j a ^ I , J ] , ( 9 )

теплопроводности

λ ^ = [ λ ^ i , j λ ^ i , J λ ^ I , j λ ^ I , J ] . ( 10 )

Пример реализации способа.

При помощи вышеописанного устройства предложенный способ был апробирован для определения комплекса теплофизических параметров ряда изотропных материалов с известной теплопроводностью и температуропроводностью, заранее определенных стандартизированными методами. В качестве эталонного материала использовали кварцевый песок с теплопроводностью 0.9 Вт·м-1·K-1, температуропроводностью 9·10-7 м2·с-1. На поверхности кварцевого песка располагался испытуемый объект. В результате решения двухпараметрической оптимизационной задачи (2) были получены численные оценки коэффициента теплоотдачи α=10 Дж·м-2·K-1 и теплового потока Е=2700 Вт·м-2. При этом параметры математической модели составили следующие значения β1=0.001,β2=10, Δτ=60 с, Δx=0.003 м, Δx1=0,00001 м, m=150 отсчетов. Используя полученные численные оценки для решения оптимизационной задачи (3) получают матрицы распределения оцененных значений теплофизических параметров поверхности исследуемого изотропного объекта и фона. При этом среднее значение теплопроводности фона составило 0.699 Вт·м-1·K-1, а температуропроводности 9,72·10-7 м2·с-1.

Погрешность измерения теплофизических параметров предложенным способом меньше, чем у рассмотренного способа-прототипа, так как погрешность аппроксимации неоднородного дифференциального уравнения с использованием явных схем, применяемых в способе-прототипе имеет погрешность первого порядка O(x), а для неявных схем, применяемых в предлагаемом способе погрешность аппроксимации неоднородных дифференциальных уравнений имеет погрешность второго порядка O(x2) (см. Самарский А.А. Введение в численные методы - М: Наука. Главная редакция физико-математической литературы, 1982. - 271 с.).

Получение круговой развертки исследуемого изотропного объекта и фона в спектре инфракрасного излучения осуществляется за счет использования подвижного датчика тепловизионного приемника (либо за счет вращения с постоянной скоростью исследуемого объекта и фона относительно оси поворотной конструкции, на которой они расположены, при неподвижном датчике тепловизионного приемника).

Неявные схемы требуют для решения неоднородных дифференциальных уравнений на один порядок меньше шагов вычисления по времени и соответственно вычислительных операций по сравнению с неявными схемами.

Оценка различия теплофизических параметров исследуемого изотропного объекта относительно фона в инфракрасном диапазоне длин волн получена в виде распределения вероятности необнаружения (фиг.4), на основании которой можно судить о различной степени различия теплофизических параметров исследуемого объекта в зависимости от выбранного угла обзора на него в соответствии с заданной системой координат.

Похожие патенты RU2544894C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ 2013
  • Антонов Борис Игоревич
  • Обухов Владимир Васильевич
  • Парфирьев Андрей Владимирович
  • Ищук Игорь Николаевич
  • Попело Владимир Дмитриевич
RU2544891C1
СПОСОБ ИЗМЕРЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ 2013
  • Антонов Борис Игоревич
  • Обухов Владимир Васильевич
  • Парфирьев Андрей Владимирович
  • Ищук Игорь Николаевич
  • Ворсин Иван Владиславович
RU2544890C1
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ЗЕМНОЙ ПОВЕРХНОСТИ 2019
  • Ищук Игорь Николаевич
  • Долгов Алексей Александрович
RU2707387C1
СПОСОБ ДИСТАНЦИОННОЙ ОЦЕНКИ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ МАТЕРИАЛОВ 2022
  • Родионов Вадим Владимирович
  • Глинчиков Сергей Николаевич
  • Зенкин Александр Александрович
  • Уваров Андрей Игоревич
  • Ищук Игорь Николаевич
RU2801295C1
СПОСОБ ИДЕНТИФИКАЦИИ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ МАТЕРИАЛОВ ДЛЯ ОБНАРУЖЕНИЯ СКРЫТЫХ ОБЪЕКТОВ (МИН) В ГРУНТЕ 2007
  • Ищук Игорь Николаевич
RU2357235C1
Способ дистанционного определения пространственного распределения теплофизических параметров поверхности земли 2016
  • Ищук Игорь Николаевич
  • Дедов Сергей Владимирович
  • Парфирьев Андрей Владимирович
  • Филимонов Андрей Михайлович
  • Степанов Евгений Александрович
  • Постнов Константин Викторович
RU2659461C2
СПОСОБ ИДЕНТИФИКАЦИИ СКРЫТЫХ ОБЪЕКТОВ В ГРУНТЕ 2008
  • Ищук Игорь Николаевич
  • Немтинов Константин Владимирович
  • Скрипкин Александр Сергеевич
  • Фесенко Александр Иванович
RU2395074C2
СПОСОБ ДИСТАНЦИОННОЙ ОЦЕНКИ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТОВ И ФОНОВ 2021
  • Великанов Алексей Викторович
  • Ищук Игорь Николаевич
  • Лихачев Максим Александрович
  • Долгов Алексей Александрович
  • Тельных Богдан Константинович
  • Зенкин Александр Александрович
  • Уваров Андрей Игоревич
  • Родионов Вадим Владимирович
RU2760528C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ МАТЕРИАЛОВ 2008
  • Обухов Владимир Васильевич
  • Ищук Игорь Николаевич
  • Фесенко Александр Иванович
  • Собко Александр Павлович
  • Антонов Борис Игоревич
RU2374631C2
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРОПРОВОДНОСТИ ОПТИЧЕСКИ ПРОЗРАЧНЫХ МАТЕРИАЛОВ 2019
  • Головин Юрий Иванович
  • Самодуров Александр Алексеевич
  • Тюрин Александр Иванович
  • Головин Дмитрий Юрьевич
RU2725695C1

Иллюстрации к изобретению RU 2 544 894 C1

Реферат патента 2015 года СПОСОБ ОЦЕНКИ РАЗЛИЧИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ВИДИМОЙ ПОВЕРХНОСТИ ИЗОТРОПНОГО ОБЪЕКТА С УЧЕТОМ ФОНА

Изобретение относится к теплофизическим измерениям и может быть использовано для определения комплекса теплофизических параметров изотропных материалов. Заявленный способ включает тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта. Измерение тепловизионным приемником радиационной температуры производят во всех точках пространственной сетки зондируемой поверхности исследуемого изотропного объекта. Располагают тепловизионный приемник на заданном расстоянии d от оси геометрического центра исследуемого объекта и совершают тепловизионным приемником круговое движение с постоянной скоростью относительно геометрического центра объекта, либо тепловизионный приемник, размещают неподвижно на заданном расстоянии d от оси геометрического центра исследуемого объекта, осуществляя вращения с постоянной скоростью исследуемого изотропного объекта и фона относительно оси поворотной конструкции, на которой они расположены. Формируют набор термограмм круговых разверток радиационных инфракрасных изображений объекта и фона, полученных в разные моменты времени. Применяют разностную модель с использованием неявных схем. Определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта. Технический результат - повышение точности получаемых данных. 5 ил.

Формула изобретения RU 2 544 894 C1

Способ оценки различия теплофизических параметров - видимой поверхности изотропного объекта с учетом фона, включающий тепловое воздействие от инфракрасного источника нагрева по всей поверхности исследуемого изотропного объекта, измерение тепловизионным приемником радиационную температуру во всех точках пространственной сетки зондируемой поверхности исследуемого изотропного объекта и расчет математической модели прямой задачи теплопроводности на основе метода конечных разностей, отличающийся тем, что размещают исследуемый изотропного объект на эталонном изотропном материале - фоне, осуществляют тепловое воздействие инфракрасным источником нагрева по всей видимой поверхности исследуемого изотропного объекта и фона, располагают тепловизионный приемник на заданном расстоянии d от оси геометрического центра исследуемого объекта под малым углом наклона относительно фона и совершают тепловизионным приемником круговое движение с постоянной скоростью относительно геометрического центра исследуемого изотропного объекта либо тепловизионный приемник размещают неподвижно на заданном расстоянии d от оси геометрического центра исследуемого изотропного объекта под малым углом наклона относительно фона, осуществляя вращения с постоянной скоростью исследуемого изотропного объекта и фона относительно оси поворотной конструкции, на которой они расположены, при этом перед началом проведения измерения радиационную температуру измеряют на поверхности эталонного материала с известными теплофизическими параметрами в одной точке, затем радиационные температуры с заданной периодичностью измеряют во всех точках пространственной сетки зондируемой поверхности исследуемого изотропного объекта и фона, формируют набор термограмм - круговых разверток радиационных инфракрасных изображений объекта и фона, полученных в разные моменты времени, применяют разностную модель с использованием неявных схем:

получают на основании численного решения данной системы уравнений дискретную функцию зависимости температуры на поверхности исследуемого объекта и фона от времени
T 0 k = T i . j [ Δ τ k ] ,
решают оптимизационную параметрическую задачу для эталонного изотропного материала
{ J [ k : E , α ] = k = 0 K ( T [ a Ф , λ Ф , β , Δ τ , Δ x , ε , k , m , d : E , α ] T ˜ Ф [ Δ τ k ] ) 2 } min E , α ;
находят из минимума невязки численные оценки E и α ;
решают оптимизационную параметрическую задачу для исследуемого изотропного объекта в каждой точке пространственной сетки круговой развертки исследуемого изотропного объекта и фона в соответствии с растром изображения:
{ J i , j [ k : a , λ ] = k = 0 K ( T i , j [ E , α , β , Δ τ , Δ x , ε , k , m : a , λ ] T ˜ i , j [ Δ τ k ] ) 2 } min a , λ ;
определяют из минимума невязки искомые оцененные значения для каждой точки пространственного распределения теплофизических параметров исследуемого изотропного объекта и λ ,
осуществляют автоматическую оценку различия теплофизических параметров видимой поверхности изотропного объекта с учетом фона путем сравнения теплофизических параметров этого объекта и фона и определения зоны необнаружения, исходя из вероятности нераспознавания объекта относительно фона при помощи выражения:
( 1 + ξ ) > λ λ Ф ( 1 ξ ) .
а - температуропроводность исследуемого изотропного объекта;
λ - теплопроводность исследуемого изотропного объекта;
a Ф - температуропроводность эталонного изотропного материала;
λФ - теплопроводность эталонного изотропного материала;
- оцененное значение температуропроводности исследуемого изотропного объекта;
λ - оцененное значение теплопроводности исследуемого изотропного объекта;
β - коэффициент релаксации;
T m k - сеточная функция;
ε - коэффициент излучения;
k - номер отсчета для сеточной функции по времени, где k [ 0 , K ¯ ] ;
m - номер отсчета для сеточной функции по пространству, где m [ 0 , M ¯ ] ;
Δτ - шаг сетки по времени;
Δx, Δx1, - шаг сетки по расстоянию;
Е - плотность теплового потока от инфракрасного источника нагрева, отнесенная к единице площади пространственной сетки;
α - коэффициент теплоотдачи, отнесенный к единице площади поперечного сечения пространственной сетки;
Ji,j - функционал невязки;
T ˜ i , j - значение разности радиационной температуры исследуемого изотропного объекта по отношению к температуре окружающей среды, полученное для каждой точки зондируемой поверхности круговой развертки исследуемого изотропного объекта и фона в соответствии с растром изображения;
i, j - номера отсчетов пространственной сетки видимой поверхности изотропного объекта и фона, где i [ 0 , I ¯ ] , j [ 0 , J ¯ ] ;
I×J - растр изображения;
T i , j [ E , α , β , Δ τ , Δ x , ε , k , m ] - значение разности температур, рассчитанное дискретной математической моделью, с учетом исследуемого изотропного объекта;
T ˜ Ф - значение разности радиационной температуры фона (эталонный изотропный материал), измеренной тепловизионным приемником, по отношению к температуре окружающей среды;
E ^ - оцененное значение коэффициента теплового потока;
α ^ - оцененное значение коэффициента теплоотдачи;
d - заданное расстояние между тепловизионным приемником и исследуемым объектом;
ξ - предельное отклонение яркости объекта от яркости фона на изображение тепловой томограммы, при котором этот объект неразличим, ξ [ 0 , 1 ¯ ] .

Документы, цитированные в отчете о поиске Патент 2015 года RU2544894C1

СПОСОБ ИДЕНТИФИКАЦИИ СКРЫТЫХ ОБЪЕКТОВ В ГРУНТЕ 2008
  • Ищук Игорь Николаевич
  • Немтинов Константин Владимирович
  • Скрипкин Александр Сергеевич
  • Фесенко Александр Иванович
RU2395074C2
Способ определения температуропроводности материалов 1989
  • Горинский Сергей Григорьевич
SU1695203A1
Способ определения теплофизических свойств плоских твердых тел 1982
  • Коростелев Владимир Михайлович
  • Попов Юрий Анатольевич
  • Семенов Виктор Гаврилович
  • Скорняков Сергей Михайлович
SU1040391A1
СПОСОБ БЕСКОНТАКТНОГО КОНТРОЛЯ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК МАТЕРИАЛОВ 1999
  • Чернышов В.Н.
  • Чернышова Т.И.
  • Сысоев Э.В.
RU2168168C2
Способ определения теплофизических свойств материалов 1982
  • Березин Виктор Вениаминович
  • Коростелев Владимир Михайлович
  • Попов Юрий Анатольевич
  • Семенов Виктор Гаврилович
  • Скорняков Сергей Михайлович
SU1100549A2

RU 2 544 894 C1

Авторы

Антонов Борис Игоревич

Обухов Владимир Васильевич

Парфирьев Андрей Владимирович

Ищук Игорь Николаевич

Попело Владимир Дмитриевич

Даты

2015-03-20Публикация

2013-08-23Подача