СПОСОБ РАБОТЫ УПРАВЛЯЕМОГО ГАЗОМАГНИТНОГО ПОДШИПНИКОВОГО УЗЛА И ПОДШИПНИКОВЫЙ УЗЕЛ Российский патент 2015 года по МПК F16C32/04 F16C39/06 

Описание патента на изобретение RU2545146C1

Изобретение относится к области машиностроения, преимущественно может использоваться в высокоскоростных роторных системах и аппаратах с вращающимися деталями.

Из существующего уровня техники известен способ работы подшипникового узла и подшипниковый узел (патент RU 2347960 C1, опубликовано 27.02.2009), согласно которому способ работы подшипникового узла с внешним наддувом заключается в создании дополнительной электромагнитной силы, направленной на увеличение несущей способности подшипникового узла. При этом электромагнитная сила создается за счет взаимодействия магнитных полей соленоида и магнита, установленных в подшипниковом узле. Также предложен подшипниковый узел, который содержит вал, установленный в газостатическом подшипнике, камеру, находящуюся в корпусе подшипника, отверстия, выполненные во вкладыше подшипника. Узел также дополнительно содержит соленоид, установленный на валу, и магнит, по крайней мере, более одного, установленный между отверстиями вкладыша подшипника.

Недостатком известного способа работы подшипникового узла является невозможность обеспечения постоянного воздушного зазора за счет того, что постоянный магнит работает только на притяжение, в результате постоянного перемагничивания вала, что ведет к его перекосу. Магнитное поле соленоида будет замыкаться с соседними полюсами, часть вала расположенная под постоянным магнитом является всегда слабо намагниченной. Недостаток поперечного расположения соленоида является возникновение магнитного торможения, вызванного токами Фуко. Данный способ не способен обеспечить точное вращение вала в опоре из-за его постоянного перекоса.

Задачей, на решение которой направлено заявляемое изобретение, является усовершенствование подшипникового узла за счет изменения конструкции.

Данная задача решается за счет использования управляемого газомагнитного подшипникового узла с продольным расположением электромагнитов, в котором применяются датчики измерения зазора.

Технический результат состоит в уменьшении изменения воздушного зазора, снижении магнитного торможения, обеспечении точного вращения вала благодаря возможности управлять положением вала посредством датчиков измерения зазора в опоре, а также увеличении несущей способности опоры за счет возможности управления токами в электромагнитах.

Указанный технический результат достигается управляемым газомагнитным подшипниковым узлом, содержащим вал, установленный в опоре, полюса и ярма электромагнитов, по крайней мере, более одного, которые установлены продольно в корпусе опоры, вкладыш газового подшипника, встроенный в опору, отверстия для пористых вставок, расположенные во вкладыше газового подшипника, рубашку, охватывающую вкладыш газостатического подшипника, обмотку электромагнитов, располагающуюся на ярмах, камеру для подачи газовой смазки в пористые вставки, расположенную между газостатическим подшипником и рубашкой, крепления для датчиков измерения зазора, располагающиеся на полюсах электромагнитов, отверстие для подачи газовой смазки в камеру, расположенное в рубашке.

Изобретение поясняется чертежом, где показан общий вид управляемого газомагнитного подшипникового узла.

Управляемый газомагнитный подшипниковый узел содержит вал 1, установленный в опоре, полюса 2 и ярма электромагнитов 3, по крайней мере, более одного, установленные продольно в корпусе опоры, вкладыш газового подшипника 4, встроенный в опору, отверстия для пористых вставок 5, расположенные во вкладыше газового подшипника, рубашку 6, охватывающую вкладыш газостатического подшипника, обмотки электромагнитов 7, расположенные на ярмах, камеру 8 для подачи газовой смазки в пористые вставки, расположенную между газостатическим подшипником и рубашкой, крепления 9 для датчиков измерения зазора, располагающиеся на полюсах электромагнитов, отверстие 10 для подачи газовой смазки в камеру, расположенное в рубашке.

Управляемый газомагнитный подшипниковый узел работает следующим образом.

Через подводящую магистраль газовая смазка под давлением поступает через отверстие в камеру газостатического подшипника и оттуда через отверстия для пористых вставок в зазор между вкладышем газостатического подшипника и валом. Разница давлений в нагруженной и ненагруженной частях вала создает несущую способность смазочного слоя, находящегося в зазоре.

Одновременно встроенные в опору электромагниты, расположенные продольно, создают дополнительную магнитную силу, центрирующую вал в опоре в зависимости от показания датчиков измерения зазора. В результате сложения газовых и магнитных сил происходит увеличение несущей способности всего управляемого газомагнитного подшипникового узла в целом, причем имеется возможность управления магнитной силой, изменением тока в электромагнитах, в зависимости от приложенной нагрузки на вал. Продольное расположение электромагнитов позволяет снизить электромагнитное торможение вала благодаря продольному направлению магнитного потока.

Похожие патенты RU2545146C1

название год авторы номер документа
Управляемый газомагнитный подшипниковый узел 2017
  • Савин Леонид Алексеевич
  • Комаров Николай Васильевич
  • Поляков Роман Николаевич
RU2677387C1
ПОДШИПНИКОВЫЙ УЗЕЛ 2015
  • Райковский Николай Анатольевич
  • Третьяков Александр Валерьевич
  • Зюлин Дмитрий Викторович
  • Потапов Виталий Валерьевич
  • Абрамов Сергей Александрович
RU2605227C1
СПОСОБ РАБОТЫ ПОДШИПНИКОВОГО УЗЛА И ПОДШИПНИКОВЫЙ УЗЕЛ 2007
  • Космынин Александр Викторович
  • Щетинин Владимир Серегевич
RU2347960C1
ШПИНДЕЛЬНЫЙ УЗЕЛ 2010
  • Космынин Александр Витальевич
  • Щетинин Владимир Сергеевич
  • Хвостиков Александр Станиславович
  • Смирнов Алексей Владимирович
  • Блинков Сергей Сергеевич
RU2449185C1
ТУРБОКОМПРЕССОР С ГАЗОМАГНИТНЫМИ ПОДШИПНИКАМИ 2014
  • Смирнов Владимир Васильевич
  • Смирнов Алексей Владимирович
  • Космынин Александр Витальевич
  • Хвостиков Александр Станиславович
RU2549002C1
ГАЗОСТАТИЧЕСКИЙ ПОДШИПНИК 2006
  • Космынин Александр Витальевич
  • Шаломов Вячеслав Иванович
  • Чернобай Сергей Владимирович
RU2299360C1
Привод крутильного органа текстильной машины 1989
  • Кисель Игорь Григорьевич
  • Шнайдер Александр Григорьевич
  • Сокол Владимир Морицевич
SU1687660A1
Радиально-упорный подшипниковый узел 2021
  • Дидов Владимир Викторович
RU2771989C1
Радиально-упорный подшипниковый узел 2021
  • Дидов Владимир Викторович
RU2771991C1
Радиально-упорный подшипниковый узел 2021
  • Дидов Владимир Викторович
RU2771999C1

Реферат патента 2015 года СПОСОБ РАБОТЫ УПРАВЛЯЕМОГО ГАЗОМАГНИТНОГО ПОДШИПНИКОВОГО УЗЛА И ПОДШИПНИКОВЫЙ УЗЕЛ

Изобретения относятся к области машиностроения, в частности к управляемому газомагнитному подшипниковому узлу и способу его работы. Подшипниковый узел содержит соленоид, магниты, полюса и ярма электромагнитов, вкладыш газового подшипника, отверстия для пористых вставок, рубашку, обмотку электромагнитов, камеру для подачи газовой смазки в пористые вставки, крепления для датчиков измерения зазора, отверстие для подачи газовой смазки в камеру. Соленоид установлен на валу. Магниты установлены между отверстиями вкладыша подшипника. Электромагниты установлены продольно в корпусе опоры. Вкладыш газового подшипника встроен в опору. Отверстия для пористых вставок расположены во вкладыше газового подшипника. Рубашка охватывает вкладыш подшипника. Камера для подачи газовой смазки расположена между подшипником и рубашкой. Крепления для датчиков измерения зазора располагаются на полюсах электромагнитов. Отверстие для подачи газовой смазки расположено в рубашке. Способ работы управляемого газомагнитного подшипникового узла заключается в создании дополнительной электромагнитной силы, направленной на увеличение несущей способности подшипникового узла. Дополнительно создается магнитная сила, управление которой происходит посредством изменения тока в электромагнитах, при этом использование датчиков изменения зазора позволяет обеспечить точное контролируемое вращение вала в опоре и малое изменение толщины газового слоя, а продольное расположение электромагнитов позволяет уменьшить магнитное трение из-за продольного направления магнитного потока. Достигается уменьшение изменения воздушного зазора. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 545 146 C1

1. Способ работы управляемого газомагнитного подшипникового узла, заключающийся в создании за счет взаимодействия магнитных полей соленоида и магнита, установленных в подшипниковом узле, дополнительной электромагнитной силы, направленной на увеличение несущей способности подшипникового узла, отличающийся тем, что дополнительно создается магнитная сила, управление которой происходит посредством изменения тока в электромагнитах, в результате чего происходит контролируемое увеличение несущей способности управляемого газомагнитного подшипникового узла, при этом использование датчиков изменения зазора позволяет обеспечить точное контролируемое вращение вала в опоре и малое изменение толщины газового слоя, а продольное расположение электромагнитов позволяет уменьшить магнитное трение из-за продольного направления магнитного потока.

2. Подшипниковый узел, содержащий соленоид, установленный на валу, и магнит, по крайней мере, более одного, установленный между отверстиями вкладыша подшипника, отличающийся тем, что содержит полюса и ярма электромагнитов, по крайней мере, более одного, которые установлены продольно в корпусе опоры, вкладыш газового подшипника, встроенный в опору, отверстия для пористых вставок, расположенные во вкладыше газового подшипника, рубашку, охватывающую вкладыш газостатического подшипника, обмотку электромагнитов, располагающихся на ярмах, камеру для подачи газовой смазки в пористые вставки, расположенную между газостатическим подшипником и рубашкой, крепления для датчиков измерения зазора, располагающиеся на полюсах электромагнитов, отверстие для подачи газовой смазки в камеру, расположенное в рубашке.

Документы, цитированные в отчете о поиске Патент 2015 года RU2545146C1

US 20080231128 A1, 25.09.2008
US 6288465 B1, 11.09.2001
СПОСОБ РАБОТЫ ПОДШИПНИКОВОГО УЗЛА И ПОДШИПНИКОВЫЙ УЗЕЛ 2007
  • Космынин Александр Викторович
  • Щетинин Владимир Серегевич
RU2347960C1
.

RU 2 545 146 C1

Авторы

Ульянов Александр Владимирович

Копытов Сергей Михайлович

Космынин Александр Витальевич

Щетинин Владимир Степанович

Хвостиков Александр Станиславович

Медведовская Юлия Владимировна

Смирнов Алексей Владимирович

Даты

2015-03-27Публикация

2013-09-17Подача