МНОГОСЛОЙНОЕ КОМПОЗИТНОЕ ПОКРЫТИЕ НА СТАЛИ, ПОЛУЧЕННОЕ МЕТОДОМ ХИМИЧЕСКОГО ОСАЖДЕНИЯ Российский патент 2015 года по МПК C23C18/32 B32B15/00 

Описание патента на изобретение RU2547518C1

Изобретение относится к машиностроению, в частности к защитным покрытиям на стали, полученным методом химического осаждения.

Известны химически осажденные покрытия, состоящие из кобальта или его сплавов (патент US 2006280860 США, заявка US 20050148724, B05D 5/12, С23С 18/34, С23С 18/36). Данные покрытия получены из раствора, содержащего источник ионов кобальта, восстанавливающий агент для осаждения ионов кобальта и стабилизатор, являющийся оксидом. Покрытия предназначены для использования в деталях микроэлектронных устройств.

Для повышения микротвердости, износостойкости, коррозионной устойчивости и антифрикционных свойств покрытий на основе металлов подгруппы железа в данные покрытия вводят различные неорганические вещества: наноалмазы (патент RU 2357002, С23С 18/36, В82В 1/00), микро- и наночастицы оксида алюминия, оксида циркония и дисульфида молибдена (патент RU 2449063, C25D 15/00; патент RU 2465374, С23С 18/36, В82В 1/00), квазикристаллические неорганические порошки, например порошок состава AlCuFe (патент RU 2478739, C25D 15/00).

Известно, что наличие в композиционных покрытиях алюминиевых нановолокон позволяет снизить коэффициент трения, повысить износостойкость и коррозионную стойкость данных покрытий (патент RU 2451113, С23С 18/36, В82В 3/00). Нановолокно, входящее в состав покрытия, представляет собой порошок оксидно-гидроксидных фаз алюминия с размером частиц 100-700 нм.

Однако для получения всех вышеперечисленных покрытий требуются достаточно сложные предварительные операции по подготовке порошков и волокон, что усложняет и удорожает процесс нанесения покрытий. Также требуется подготовка поверхности деталей для нанесения на нее химического покрытия.

В покрытия на основе металлов подгруппы железа могут быть одновременно добавлены неорганические и органические вещества.

Известны гальванические композиционные покрытия на основе никеля, получаемые методом электрохимического осаждения и содержащие никель, кобальт, частицы фторопласта Ф-4Д и дополнительно - оксид кремния (патент RU 2489530, C25D 15/00; патент RU 2489531, C25D 15/00).

Структура данных покрытий является мелкокристаллической, покрытие является равномерным, самосмазывающимся, обладает высокой износостойкостью и микротвердостью. Однако наличие в композиции оксида кремния приводит к увеличению внутренних напряжений. Необходимо строго контролировать содержание оксида кремния в композиции, так как увеличение его содержания выше заявляемого предела приводит к еще большему росту внутренних напряжений, ухудшению качества, а уменьшение содержания ниже заявляемого предела приводит к снижению износостойкости композиционного материала. Кроме того, в гальванических покрытиях водорода в несколько раз больше, чем в покрытиях, полученных химическим способом, а наличие водорода в покрытиях снижает их прочностные характеристики.

Ближайшим аналогом заявляемого покрытия является химически осажденное на поверхности легированной стали композиционное покрытие никель-фосфор-кобальт (патент CN 102433556 Китай, заявка CN 20111451578, С23С 18/36, С23С 18/50). Отмечено, что данное покрытие обладает высокой коррозионной стойкостью.

Все вышеперечисленные покрытия являются однослойными, что делает их более подверженными износу и коррозии, чем многослойные покрытия.

Задачей настоящего изобретения является повышение коррозионной стойкости и микротвердости покрытий на стальных поверхностях.

Для достижения поставленной задачи предложены многослойные композиционные покрытия (МКП), представляющие собой твердый раствор, в данном случае, частиц фосфора в металле. МКП состоят из нескольких слоев: нечетные слои являются твердым раствором фосфора в никеле, четные - фосфора в кобальте. В нечетных слоях помимо фазы твердого раствора фосфора в никеле присутствует ряд химических соединений никеля с фосфором состава Ni3P, Ni5P2, Ni2P. В состав покрытия могут входить другие компоненты, не влияющие на его коррозионную стойкость и микротвердость.

Многослойное композитное покрытие стальной поверхности состоит из входящих в состав двух слоев, по меньшей мере, шести компонентов: никеля, кобальта, фосфора, химических соединений никеля с фосфором состава Ni3P, Ni5P2, Ni2P, при этом нечетные слои представляют собой твердый раствор фосфора в никеле и в них присутствуют химические соединения состава Ni3P, Ni5P2, Ni2P, а четные слои представляют собой твердый раствор фосфора в кобальте, при этом чередующиеся слои взаимосвязаны за счет сращивания матрицы последующего слоя с матрицей предыдущего слоя.

В нечетных слоях покрытия частицы никеля, фосфора, химических соединений Ni3P, Ni5P2, Ni2P имеют размеры в пределах от 40 до 1000 нм. В четных слоях покрытия частицы кобальта и фосфора имеют размеры в пределах от 300 до 5100 нм.

Химически осажденный никель обладает высокими коррозионно-защитными свойствами, имеет малую пористость. Таким образом, покрытие никель-фосфор может применяться на металлических изделиях сложного профиля, на крупногабаритной арматуре, для увеличения износоустойчивости трущихся поверхностей деталей машин; для повышения коррозионной стойкости в среде кипящей щелочи и перегретого пара; для замены хромового покрытия, чтобы использовать вместо коррозионностойкой стали более дешевую сталь, покрытую слоем, состоящим из никеля и фосфора.

Химическое нанесение кобальта на поверхность металлических материалов придает им ферромагнитные свойства, а также высокую микротвердость. Особое значение имеет осаждение данного покрытия на тонкие магнитные пленки, используемые для создания микроэлектронных устройств.

Технический результат предлагаемого изобретения заключается в том, что полученные покрытия обладают высокой микротвердостью и коррозионной стойкостью. Коррозионная стойкость повышается в результате наличия нескольких плотных слоев коррозионно-стойкого никеля. Микротведость покрытий повышается в результате наличия четных слоев кобальт-фосфор, физические свойства которых, в частности твердость, превышают аналогичные для слоя никель-фосфор. Нанесение чередующихся слоев позволяет варьировать характеристики получаемого покрытия. В том случае, если последним нанесен слой никель-фосфор, покрытие обладает повышенной коррозионной стойкостью; если последним нанесен слой кобальт-фосфор, то покрытие обладает высокой микротвердостью.

Описание изобретения

МКП состоит из нескольких чередующихся слоев, нечетные слои являются твердым раствором фосфора в никеле, а также в них присутствует ряд химических соединений состава Ni3P, Ni5P2, Ni2P. Четные слои являются твердым раствором фосфора в кобальте. В состав покрытия могут входить другие компоненты, не влияющие на его коррозионную стойкость и микротведость.

Первый слой МКП осаждается на стальной поверхности, а последующие слои - на композитной поверхности металл-фосфор. На покрываемой поверхности ионы металла восстанавливаются до металла и взаимодействуют с фосфором.

Нечетные слои - покрытие никель-фосфор - имеют кристаллическую структуру, в которой размер частиц колеблется от 40 до 1000 нм. Микротвердость получаемого покрытия никель-фосфор составляет 2940-3930 МПа (300-400 кгс/мм2). Толщина каждого из нечетных слоев 12-15 мкм.

Четные слои - покрытие кобальт-фосфор - также имеют кристаллическую структуру, в которой размер частиц колеблется от 300 до 5100 нм. Микротвердость получаемого покрытия кобальт-фосфор составляет 3500-5000 МПа (350-500 кгс/мм2). Толщина каждого из четных слоев 5-7 мкм.

Ниже приведены примеры заявленного изобретения.

Пример 1. Двухслойное МКП, полученное на образцах стали Ст3. Исследование полученных слоев методом сканирующей электронной микроскопии (СЭМ) показало, что размер частиц в слое никель-фосфор составляет 40-1000 нм (увеличение в 10000 раз), а размер частиц в слое кобальт-фосфор составляет 500-1200 нм (увеличение в 5500 раз). Микротвердость МКП, измеренная после нанесения второго слоя, составляет 4600 МПа.

Пример 2. Двухслойное МКП, полученное на образцах стали Ст3, в котором первый слой аналогичен примеру 1. Исследование второго слоя кобальт-фосфор методом СЭМ при увеличении в 6000 раз показало, что размер частиц в слое составляет 800-5100 нм. Микротвердость МКП, измеренная после нанесения второго слоя, составляет 4500 МПа.

Пример 3. Двухслойное МКП, полученное на образцах стали Ст3, в котором первый слой аналогичен примеру 1. Исследование второго слоя кобальт-фосфор методом СЭМ при увеличении в 7500 раз показало, что размер частиц в слое составляет 300-2030 нм. Микротвердость МКП, измеренная после нанесения второго слоя, составляет 3800 МПа.

Пример 4. Двухслойное МКП, полученное на образцах стали Ст3, в котором первый слой аналогичен примеру 1. Исследование второго слоя кобальт-фосфор методом СЭМ при увеличении в 13000 раз показало, что размер частиц в слое составляет 400-1400 нм. Микротвердость МКП, измеренная после нанесения второго слоя, составляет 5000 МПа.

На фигуре показана зависимость изменения удельной массы МКП, полученная при испытании покрытий на коррозионную стойкость. Испытанные МКП состоят из двух слоев, первый слой получен из раствора, состав которого приведен в таблице 1, второй слой - из раствора, состав которого приведен в таблице 2.

Испытания на коррозионную стойкость проводились выдерживанием взвешенных образцов в 3%-ном растворе натрия хлорида при температуре 18-20°C (по ГОСТ 9.308-85. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы ускоренных коррозионных испытаний). После истечения определенного времени образцы вынимали из раствора, сушили, взвешивали и определяли изменение массы.

Таблица 1 Компонент раствора Количество никель сернокислый 10 г/л натрий гипофосфит 25 г/л натрий уксуснокислый 20 г/л тиомочевина 0,005 г/л уксусная кислота 13 мл/л

Таблица 2 № раствора Состав раствора, г/л кобальта дифторида натрия гипофосфита натрия лимоннокислого аммония хлорида 1 35 20 100 45 2 35 20 80 45 3 35 10 80 45 4 15 10 80 45 5 15 10 100 45 6 15 20 100 45 7 35 10 100 45 8 15 20 80 45

Похожие патенты RU2547518C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО КОМПОЗИТНОГО ПОКРЫТИЯ НА СТАЛИ МЕТОДОМ ХИМИЧЕСКОГО ОСАЖДЕНИЯ 2013
  • Фукс Софья Лейвиковна
  • Хитрин Сергей Владимирович
  • Зыкина Людмила Николаевна
  • Михалицына Юлия Сайтжановна
RU2544334C1
Способ получения композиционного электрохимического покрытия на стали 2015
  • Фукс Софья Лейвиковна
  • Пинаева Людмила Николаевна
RU2618679C1
СОСТАВ ЭЛЕКТРОЛИТА И СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКИХ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ СИСТЕМЫ "НИКЕЛЬ-ФОСФОР-ВОЛЬФРАМ" 2021
  • Красиков Алексей Владимирович
  • Меркулова Мария Витальевна
  • Марков Михаил Александрович
  • Быкова Алина Дмитриевна
  • Беляков Антон Николаевич
  • Улин Игорь Всеволодович
RU2792096C1
КОМПОЗИЦИОННОЕ ПОКРЫТИЕ НА ОСНОВЕ НИКЕЛЯ С УЛЬТРАДИСПЕРСНЫМИ АЛМАЗАМИ 2016
  • Федотов Сергей Александрович
  • Федотова Наталья Сергеевна
  • Рябчикова Людмила Петровна
  • Демаков Александр Геннадьевич
RU2638480C2
Способ получения электрохимического композиционного никель-алмазного покрытия 2017
  • Буркат Галина Константиновна
  • Долматов Валерий Юрьевич
  • Руденко Дмитрий Владимирович
RU2676544C1
НАНОМОДИФИЦИРОВАННЫЙ ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ НИКЕЛЕВОГО ПОКРЫТИЯ 2009
  • Ткачев Алексей Григорьевич
  • Мищенко Сергей Владимирович
  • Литовка Юрий Владимирович
  • Дьяков Игорь Алексеевич
  • Кузнецова Ольга Александровна
  • Ткачев Максим Алексеевич
RU2411308C2
СПОСОБ ПОЛУЧЕНИЯ НАНОМОДИФИЦИРОВАННОГО ГАЛЬВАНИЧЕСКОГО НИКЕЛЕВОГО ПОКРЫТИЯ 2009
  • Ткачев Алексей Григорьевич
  • Мищенко Сергей Владимирович
  • Литовка Юрий Владимирович
  • Дьяков Игорь Алексеевич
  • Кузнецова Ольга Александровна
  • Ткачев Максим Алексеевич
RU2411309C2
ЭЛЕКТРОЛИТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ОСАЖДЕНИЯ КОМПОЗИЦИОННОГО ХРОМОВОГО ПОКРЫТИЯ 2009
  • Ткачев Алексей Григорьевич
  • Литовка Юрий Владимирович
  • Дьяков Игорь Алексеевич
  • Кузнецова Ольга Александровна
RU2422563C1
Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах 2018
  • Орыщенко Алексей Сергеевич
  • Марков Михаил Александрович
  • Красиков Алексей Владимирович
  • Улин Игорь Всеволодович
  • Геращенков Дмитрий Анатольевич
  • Кузнецов Павел Алексеевич
  • Васильев Алексей Филиппович
  • Быкова Алина Дмитриевна
RU2678045C1
СПОСОБ НАНЕСЕНИЯ КОМПОЗИЦИОННЫХ ХРОМОВЫХ ПОКРЫТИЙ 2014
  • Баранов Анатолий Никитич
  • Янюшкин Александр Сергеевич
  • Янченко Наталья Ивановна
  • Тимкина Екатерина Викторовна
  • Рычков Даниил Александрович
RU2576797C1

Реферат патента 2015 года МНОГОСЛОЙНОЕ КОМПОЗИТНОЕ ПОКРЫТИЕ НА СТАЛИ, ПОЛУЧЕННОЕ МЕТОДОМ ХИМИЧЕСКОГО ОСАЖДЕНИЯ

Изобретение относится к машиностроению, в частности к защитным покрытиям на стали, полученным методом химического осаждения. Покрытие содержит, по меньшей мере, шесть компонентов - никель, кобальт, фосфор, химические соединения никеля с фосфором состава Ni3P, Ni5P2, Ni2P, и состоит из нескольких чередующихся слоев, при этом нечетные слои являются твердым раствором фосфора в никеле, а четные - твердым раствором фосфора в кобальте, причем взаимосвязь чередующихся слоев осуществлена за счет сращивания матрицы последующего слоя с матрицей предыдущего слоя. В нечетных слоях покрытия частицы никеля, фосфора, химических соединений Ni3P, Ni5P2, Ni2P имеют размеры в пределах от 40 до 1000 нм. В четных слоях покрытия частицы кобальта и фосфора имеют размеры в пределах от 300 до 5100 нм. Полученные многослойные композитные покрытия обладают высокой микротвердостью и коррозионностойкостью. 3 з.п. ф-лы, 1 ил., 2 табл., 4 пр.

Формула изобретения RU 2 547 518 C1

1. Многослойное композитное покрытие стальной поверхности, состоящее из входящих в состав двух слоев, по меньшей мере, шести компонентов: никеля, кобальта, фосфора, химических соединений никеля с фосфором состава Ni3P, Ni5P2, Ni2P, при этом нечетные слои представляют собой твердый раствор фосфора в никеле и в них присутствуют химические соединения состава Ni3P, Ni5P2, Ni2P, а четные слои представляют собой твердый раствор фосфора в кобальте, при этом чередующиеся слои взаимосвязаны за счет сращивания матрицы последующего слоя с матрицей предыдущего слоя.

2. Покрытие по п.1, отличающееся тем, что в его состав входят другие компоненты, не влияющие на его коррозионную стойкость и микротведость.

3. Покрытие по п.1, отличающееся тем, что частицы никеля, фосфора, химических соединений Ni3P, Ni5P2, Ni2P в нечетных слоях имеют размеры в пределах от 40 до 1000 нм.

4. Покрытие по п.1, отличающееся тем, что частицы кобальта и фосфора в четных слоях имеют размеры в пределах от 300 до 5100 нм.

Документы, цитированные в отчете о поиске Патент 2015 года RU2547518C1

СПОСОБ НАНЕСЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ НА МЕТАЛЛИЧЕСКИЕ ИЗДЕЛИЯ 2002
  • Падеров А.Н.
  • Векслер Ю.Г.
RU2228387C2
CN 102433556 A, 02.05.2012
СПОСОБ ПОЛУЧЕНИЯ АМОРФНЫХ МАГНИТНЫХ ПЛЕНОК Co-P 2011
  • Кипарисов Семен Яковлевич
  • Чжан Анатолий Владимирович
  • Патрин Геннадий Семенович
RU2457279C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО АНТИФРИКЦИОННОГО ПОКРЫТИЯ НА ИЗДЕЛИИ ИЗ СТАЛИ 2011
  • Трофимов Геннадий Еремеевич
  • Щербаков Игорь Николаевич
  • Шевченко Максим Юрьевич
  • Логинов Владимир Тихонович
  • Дерлугян Петр Дмитриевич
  • Дерлугян Федор Петрович
RU2455391C1
US 2006280860 A1, 14.12.2006

RU 2 547 518 C1

Авторы

Фукс Софья Лейвиковна

Хитрин Сергей Владимирович

Зыкина Людмила Николаевна

Михалицына Юлия Сайтжановна

Даты

2015-04-10Публикация

2013-11-29Подача