Изобретение относится к области аналитической химии, а именно к масс-спектрометрии, к способам осуществления дейтеро-водородного (H/D) обмена в ионном источнике масс-спектрометра и может быть использовано для проведения структурного экспресс-анализа биомакромолекул.
В настоящее время основными методами структурного анализа биомакромолекул являются методы ядерного магнитного резонанса, рентгеноструктурной спектроскопии и оптической спектроскопии. Однако эти методы могут быть применены для анализа только в случае, если исследуемое вещество является чистым и не содержит примесей. Во многих случаях при работе со сложными смесями органического происхождения, такими как нефть, гуминовые кислоты, биологические жидкости и.т.д., молекулярные компоненты смеси не могут быть выделены в виде индивидуальных соединений. Для анализа таких смесей используют масс-спектрометрический анализ.
Дейтеро-водородный обмен широко используют в масс-спектрометрии для структурных исследований и изучения механизмов реакций в газовой фазе [Wales, Т.Е.; John, R. Mass Spectrom. Rev. 2006, 25, 158-170, Walter, S.J. Am. Soc. Mass Spectrom. 2006, 17, 1481-1489]. Подвижные атомы водорода, такие как амидные, кислотные или спиртовые, могут быть легко заменены на дейтерий в растворе, но во время напуска в масс-спектрометр происходит значительный обратный обмен из-за взаимодействия со следами атмосферной воды [Zhang, Z.; Smith, D.L. Protein Sci. 1993, 2, 522-531]. Для амидных водородов обратный обмен может быть устранен путем напуска азота или сухого воздуха в ионный источник [Katta, V.; Chait, В. Т.J. Am. Chem. Soc. 1993, 115, 6317-6321]. Описано проведение H/D обмена подвижных кислотных и гидроксильных атомов водорода в высоковакуумной части масс-спектрометра путем столкновений с дейтерированным газом [Nagy, К.; Redeuil, К.; Rezzi, S. Anal. Chem. 2009, 81, 9365-9371].
Для того чтобы происходила реакция дейтеро-водородного обмена кислотных и гидроксильных атомов водорода, необходимо создание насыщенной атмосферы дейтерированного газа. С этой целью предложены различные экспериментальные методы, например, использование интерфейса с газовой завесой дейтерированного аммиака в низковакуумной части масс-спектрометра за входным капилляром [Hemling, М.Е.; Conboy, J.J.; Bean, M.F.; Mentzer, M.; Steven, A., J. Am. Soc. Mass Spectrom. 1994, 5, 43-442]. Для осуществления метода необходима существенная модификация стандартного коммерческого масс-спектрометрического оборудования.
Известен способ и система для анализа метаболитов с использованием H/D в режиме он-лайн, включающая жидкостной хроматограф-масс-спектрометр (ЖХ-МС), снабженный источником ионизации электроспрей [ЕР 1345028 А1, опубл. 17.09.2003]. Способ предполагает использование специального интерфейса, позволяющего производить одновременный напуск исследуемого образца и дейтерированного растворителя. Возможности применения способа ограничены необходимостью использования источника ионизации специального вида.
Описан метод проведения дейтеро-водородного обмена амидных атомов водорода в макромолекулах [WO 2011059401 А1 опубл. 19.05.2011] с использованием двух разных каналов для исследуемого образца и дейтерированного растворителя, разделенных полупроницаемой мембраной. Как и в предыдущем аналоге, для реализации способа требуется специальное оборудование, что ограничивает возможности его использования.
В качестве прототипа предлагаемого способа H/D обмена взят метод, описанный в [Wolff, J.-C.; Alice, M.-F. Mass Spectrom. 2006, 20, 3769-3779.], согласно которому, помимо основного капилляра, по которому осуществляют подачу исследуемого образца в ионный источник, используют дополнительный капилляр, через который подают тяжелую воду или другой дейтерированный растворитель. Электрораспылением дейтерированного растворителя в ионном источнике создают атмосферу, насыщенную дейтерирующим газом. В результате ион-молекулярных реакций осуществляется обмен подвижных атомов водорода исследуемого вещества на дейтерий. Недостатком данного способа является невозможность его осуществления на стандартном коммерческом масс-спектрометрическом оборудовании и необходимость использования специальных ионных источников двойного электрораспыления. Кроме того, достигаемая данным способом глубина дейтеро-водородного обмена, составляющая 40-70%, недостаточна для многих приложений, таких, как структурные исследования биомакромолекул, содержащих более 10 быстро обмениваемых атомов водорода, к которым относятся сахара, гликопепдиды, продукты постмортальных превращений органического вещества.
Задачей, решаемой изобретением, является разработка способа проведения дейтеро-водородного обмена, обеспечивающего увеличение глубины дейтеро-водородного обмена до 85% и пригодного для реализации в стандартном ионном источнике масс-спектрометра при атмосферном давлении.
Поставленная задача решается предлагаемым способом, включающим распыление в ионном источнике раствора исследуемого образца через капилляр для напуска образца и создание в ионном источнике атмосферы, насыщенной дейтерирующим агентом, отличающимся тем, что для создания атмосферы, насыщенной дейтерирующим агентом, в ионном источнике испаряют каплю дейтерирующего агента, помещенную вблизи входного капилляра в масс-спектрометр на металлической подложке, обогреваемой путем контакта с нагретым входным конусом масс-спектрометра.
На Фиг.1 показана схема ионного источника масс-спектрометра, в котором реализуется заявляемый способ.
На Фиг.2 показан масс-спектр (ионная ловушка) ионных кластеров фосфорной кислоты, полученных с использованием ионизации электрораспылением в режиме отрицательных ионов.
На Фиг.3 показаны ИЦР масс-спектры (ионный циклотронный резонанс) 4-звенного ионного кластера фосфорной кислоты, полученные по примерам 1-4 с использованием заявляемого способа.
На Фиг.4 показаны ИЦР масс-спектры 8-звенного ионного кластера фосфорной кислоты, полученные по примерам 1-4 с использованием заявляемого способа.
На Фиг.5 показан ИЦР масс-спектр мальтотетрозы, полученный по примеру 5 с использованием заявляемого способа.
Для реализации заявляемого способа ионизацию испытуемого образца можно осуществлять любым известным способом ионизации при атмосферном давлении - электрораспылением, фотоионизацией, химической ионизацией и др. В качестве растворителя для исследуемого образца могут быть обычные протонные растворители, а также их дейтерированные аналоги. Испытуемый образец в форме раствора в воде или в этаноле или в их смеси или в их дейтерированных аналогах подают в ионный источник посредством распыления через капилляр 1. Для создания атмосферы, насыщенной дейтерирующим агентом, на подложку 2 помещают каплю 3 дейтерирующего агента, в качестве которого используют тяжелую воду или дейтерированный метиловый или этиловый спирт или их смеси. Учитывая более низкую стоимость и относительно высокую температуру кипения, более целесообразно использовать тяжелую воду. Подложку изготавливают из теплопроводного, инертного в условиях эксперимента материала, например, меди, латуни или стали. Подложка размещена вблизи входного капилляра 4 в масс-спектрометр так, что она нагревается от контакта с горячим (температура 150-300°С) конусом 5, внутри которого находится капилляр 4. Достигаемая при таком контакте температура подложки 75-100°С достаточна, чтобы обеспечить испарение дейтерирующего агента. Испарение капли объемом 300-400 мкл позволяет проводить анализ в течение 20-30 минут. За счет испарения капли дейтерирующего агента в пространстве между капилляром 1 для напуска ионизированного образца и входным отверстием в капилляр 4 создается атмосфера паров дейтерирующего агента, молекулы которого проникают внутрь капель анализируемого образца, образующихся на выходе из капилляра 1, или участвуют в ионно-молекулярных реакциях внутри входного капилляра 4 на пути продвижения в масс-спектрометр. В результате этих процессов происходит дейтеро-водородный обмен. Для повышения глубины H/D обмена, особенно, при анализе соединений, содержащих большое количество подвижных атомов водорода, целесообразно в качестве растворителя для анализируемого образца использовать дейтерированные растворители, например смесь D2O и EtOD, которые, в результате распыления на выходе из капилляра 1, дополнительно насыщают пространство ионного источника дейтерирующим агентом. Взаимное расположение капилляра 1 для напуска ионизированного образца, капли 3 на подложке и входного отверстия в капилляр 4 подбирают так, чтобы в пространстве между ними формировалась максимально насыщенная дейтерирующим агентом атмосфера, обеспечивающая максимальную глубину D/H обмена. На практике для стандартного ионного источника расстояние L1 между выходным отверстием капилляра 1 и плоскостью сечения конуса 5 составляет 5-10 мм, расстояние L2 между каплей 3 и осью входного капилляра 4 находится в интервале 3-8 мм, а расстояние L3 между плоскостью сечения конуса 5 и каплей 3 составляет 3-6 мм. Вне указанных интервалов возможно ухудшение эффективности ионизации за счет нестабильности процесса H/D обмена.
Многочисленные эксперименты показывают, что глубина H/D обмена не зависит от скорости напуска образца в ионизационную камеру, от количества нанесенного на подложку дейтерирующего агента и от материала подложки и определяется лишь степенью насыщения пространства ионизационной камеры дейтерированным агентом.
Возможность реализации заявляемого изобретения с получением заявленного технического результата иллюстрируют нижеследующие примеры 1-4 осуществления H/D обмена при масс-спектрометрическом анализе ионных кластеров фосфорной кислоты. Эти кластеры покрывают широкий диапазон масс и содержат большое количество кислых лабильных атомов водорода. В качестве примера на Фиг.2 показан масс-спектр кластеров фосфорной кислоты, содержащих до 8 звеньев. Спектр получен с использованием ионизации электрораспылением в режиме отрицательных ионов в ионной ловушке масс-спектрометра 7 Т LTQ-FT Ultra (Thermo, Бремен, Германия). Количество подвижных атомов водорода N в кластере равно 3m - 1, где m - количество звеньев в кластере. Для ввода образца в ионизационную камеру использован метод электрораспыления при напряжении на игле распылителя 2400 В и скорости распыления 1 мкл/мин. Для приготовления образцов фосфорной кислоты 2 мкл фосфорной кислоты (Sigma, HPLC grade) растворяют в смеси, содержащей по 100 мкл воды и этанола. Для каждого образца проведено по две серии опытов с использованием в качестве растворителя обычной воды и этанола и их дейтерированных аналогов. В качестве подложки в приведенных примерах использована медная пластина. На подложку нанесена капля тяжелой воды объемом 400 мкл. Температура подложки 85°С, температура капли 55°С. Время испарения капли, соответствующее времени анализа - 20 минут. Расстояние L1 составляет 7 мм, расстояние L2 составляет 5 мм, расстояние L3 составляет 4 мм. Для контроля температуры использован термопарный детектор.
Возможности способа для анализа олигосахаридов проиллюстрированы на примере анализа мальтотетрозы (пример 5), масс-спектр которой показан на Фиг.5. Для приготовления образца 2 мг мальтотетрозы растворяют 100 мкл тяжелой воды, а затем аликвоту объемом 5 мкл дополнительно растворяют в 100 мкл тяжелой воды и 100 мкл дейтерированного этанола.
Как видно из Фиг.3-5, спектры, полученные с разрешающей способностью примерно 300000, описываются биномиальным распределением, аппроксимация которого позволяет определить глубину H/D обмена:
где h - относительная высота пика в масс-спектре, соответствующего n заменам атомов водорода на дейтерий, N - общее количество лабильных атомов водорода, p - глубина обмена, n - количество обменов.
Результаты, полученные в примерах 1-5, показаны в таблице и на Фиг.3-5.
Низкая глубина обмена в случае использования только дейтерированного растворителя без дополнительного испарения дейтерирующего агента из капли (пример 3) демонстрирует отрицательное влияние обратного обмена в источнике, связанного с взаимодействием со следами атмосферной воды. Как видно из примеров 2 и 4, применение заявляемого способа позволяет значительно повысить глубину H/D обмена. Так, в случае 4-звенных кластеров фосфорной кислоты испарение капли D2O на подложке (пример 2) приводит к 5-кратному повышению глубины H/D обмена, а дополнительное одновременное использование дейтерированных растворителей (пример 4) позволяет увеличить глубину H/D обмена еще на 13-14%. Аналогичные результаты получены и для 8-звенных кластеров фосфорной кислоты. Результаты, представленные в таблице для мальтотетрозы (пример 5), показывают, что в случае олигосахаридов заявляемый способ также позволяет достичь 85%-ной глубины H/D обмена.
Таким образом, изобретение позволяет значительно повысить глубину дейтеро-водородного обмена подвижных атомов водорода на дейтерий, используя стандартный ионный источник масс-спектрометра при атмосферном давлении.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИДЕНТИФИКАЦИИ ВЕЩЕСТВ С ИСПОЛЬЗОВАНИЕМ МАСС-СПЕКТРОМЕТРА | 2019 |
|
RU2722657C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОТОННЫХ ПУЧКОВ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ | 2020 |
|
RU2754826C1 |
МОЛЕКУЛЫ, НЕСУЩИЕ СПОСОБНЫЕ К АССОЦИАЦИИ ГРУППЫ | 2011 |
|
RU2536867C2 |
ДОПИРУЮЩИЕ ДОБАВКИ ДЛЯ ОБНАРУЖЕНИЯ НИТРАТОВ | 2016 |
|
RU2705764C2 |
СИСТЕМА И СПОСОБ ДЛЯ ИДЕНТИФИКАЦИИ БИОЛОГИЧЕСКИХ ТКАНЕЙ | 2010 |
|
RU2558884C2 |
СПОСОБ АНАЛИЗА ПРИМЕСЕЙ В ЖИДКОСТЯХ ИЛИ ГАЗАХ ПРИ ИХ МИКРОКАНАЛЬНОМ ИСТЕЧЕНИИ В ВАКУУМ ПОД ВОЗДЕЙСТВИЕМ СВЕРХЗВУКОВОГО ГАЗОВОГО ПОТОКА, СОДЕРЖАЩЕГО ИОНЫ И МЕТАСТАБИЛЬНО ВОЗБУЖДЁННЫЕ АТОМЫ, С ФОРМИРОВАНИЕМ И ТРАНСПОРТИРОВКОЙ АНАЛИЗИРУЕМЫХ ИОНОВ В РАДИОЧАСТОТНОЙ ЛИНЕЙНОЙ ЛОВУШКЕ, СОПРЯЖЁННОЙ С МАСС-АНАЛИЗАТОРОМ | 2016 |
|
RU2640393C2 |
Способ определения мельдония в моче человека | 2017 |
|
RU2639475C1 |
Устройство для нанесения наночастиц оксидов металлов на металлическую поверхность при нормальных условиях | 2019 |
|
RU2733530C1 |
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ И ТРАНСПОРТИРОВКИ ПУЧКА ПРОТОНОВ ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ | 2021 |
|
RU2772818C1 |
СПОСОБ ЭЛЕКТРОРАСПЫЛЕНИЯ ХРОМАТОГРАФИЧЕСКИХ ПОТОКОВ АНАЛИЗИРУЕМЫХ РАСТВОРОВ ВЕЩЕСТВ ДЛЯ ИСТОЧНИКОВ ИОНОВ | 2011 |
|
RU2530782C2 |
Изобретение относится к области аналитической химии, а именно к масс-спектрометрии, к способам осуществления дейтеро-водородного обмена в ионном источнике масс-спектрометра и может быть использовано для проведения структурного экспресс-анализа биомакромолекул. Для создания атмосферы, насыщенной дейтерирующим агентом, в ионном источнике испаряют каплю дейтерирующего агента, помещенную на металлической подложке, обогреваемой путем контакта с нагретым входным конусом масс-спектрометра. В качестве растворителя для исследуемого образца используют растворитель, не содержащий дейтерий, или дейтерированный растворитель. Техническим результатом является возможность в несколько раз повысить глубину дейтеро-водородного обмена подвижных атомов водорода на дейтерий, используя стандартный ионный источник масс-спектрометра при атмосферном давлении. 2 з.п. ф-лы, 5 ил., 1 табл.
1. Способ проведения дейтеро-водородного обмена в ионном источнике масс-спектрометра при атмосферном давлении, включающий распыление в ионном источнике раствора исследуемого образца через капилляр для напуска образца и создание в ионном источнике атмосферы, насыщенной дейтерирующим агентом, отличающийся тем, что для создания атмосферы, насыщенной дейтерирующим агентом, в ионном источнике испаряют каплю дейтерирующего агента, помещенную на металлической подложке, обогреваемой путем контакта с нагретым входным конусом масс-спектрометра.
2. Способ по п.1, отличающийся тем, что в качестве растворителя для исследуемого образца используют растворитель, не содержащий дейтерий.
3. Способ по п.1, отличающийся тем, что в качестве растворителя для исследуемого образца используют дейтерированный растворитель.
Wolff JC, 'On-the-fly' hydrogen/deuterium exchange liquid chromatography/mass spectrometry using a dual-sprayer atmospheric pressure ionisation source, Rapid Commun Mass Spectrom, стр | |||
ПНЕВМАТИЧЕСКИЙ ВОДОПОДЪЕМНЫЙ АППАРАТ | 1926 |
|
SU3769A1 |
Газовая криогенная машина | 1986 |
|
SU1345028A1 |
US 20080047330 A1 28.02.2008 | |||
Способ осуществления обмена активного водорода угля на дейтерий | 1971 |
|
SU479986A1 |
Авторы
Даты
2015-04-20—Публикация
2013-10-09—Подача