Изобретение относится к способам получения углеводородного топлива для ракетной техники и может быть использовано в нефтеперерабатывающей промышленности.
В настоящее время пилотируемые полеты в космос совершаются на ракетоносителях с использованием в качестве топлива керосина Т-1пп и окислителя - кислорода. Углеводородное горючее Т-1пп в сочетании с кислородом являются наиболее безопасным топливом по сравнению с другими топливами, применяемыми в космической технике. Горючее, используемое в ракетах-носителях, должно обладать определенными физико-химическими и эксплуатационными свойствами, в частности плотностью не менее 820 кг/м3.
Следует отметить, что топливо Т-1 повышенной плотности, выпускаемое ранее, - это продукт прямой перегонки Троицко-Анастасиевской (IV горизонт) малосернистой нефти нафтенового основания с пределами выкипания 130-280°C. Однако в связи с истощением запасов этой нефти остро стал вопрос о необходимости разработки альтернативных способов получения этого вида топлива, в частности, для ракетной техники (типа Т-1пп).
Следует также отметить, что проводилась многолетняя работа по подбору нефтяного сырья, аналогичного по плотности Троицко-Анастасиевской нефти, однако несмотря на то, что в качестве нефтяного сырья исследовались высокоплотные нефти, имеющие плотность не менее 910 кг/м3 и содержащие в основном нафтеновые углеводороды (Русская нефть, Ярегская нефть и т.д.), получить топливо, соответствующее по характеристикам топливу Т-1пп, не удавалось. Выделенные из этих нефтей керосиновые фракции не соответствовали топливу Т-1 по температуре начала кипения (нефти имели начало кипения не ниже 170°C).
Известен способ получения углеводородного топлива повышенной плотности для ракетной техники, включающий ректификацию предварительно стабилизированного газового конденсата Валанжинской залежи с выделением низкокипящей фракции, выкипающей внутри интервала температур 130-250°C, и ректификацию предварительно стабилизированного газового конденсата Сеноманской залежи Заполярного месторождения с выделением высококипящей фракции, выкипающей внутри интервала температур 170-250°C, и последующее смешение полученных дистиллятов в соотношении от 70%-30% до 30%-70% масс. (Патент РФ №2495083, 10.10.2013 г.).
Недостатком способа является необходимость стабилизации и переработки двух газовых конденсатов, к тому же с выделением низкокипящей фракции из одного конденсата и высококипящей фракции из другого и последующим смешением выделенных фракций.
Задачей предлагаемого изобретения является разработка способа получения углеводородного топлива повышенной плотности для ракетной техники типа Т-1пп, соответствующего ГОСТ 10227-86 с изм.1-6, характеризующегося плотностью при 20°C не менее 820 кг/м3, содержанием ароматических углеводородов не более 20% масс. и температурой начала кристаллизации не выше минус 60°C.
Поставленная задача решается способом получения углеводородного топлива повышенной плотности для ракетной техники из нефтей Ванкорского месторождения выделением фракции, выкипающей внутри интервала температур 120-270°C, с получением топлива, характеризующегося плотностью при 20°C не менее 820 кг/м3, содержанием ароматических углеводородов не более 20% масс. и температурой начала кристаллизации не выше минус 60°C.
Следует отметить, что при исследовании керосиновых фракций нефти нового Ванкорского месторождения, имеющего плотность не более 880 кг/м3, оказалось, что фракция 120-270°C, выделенная из этой нефти, имеет температуру начала кристаллизации минус 61°C и плотность около 825 кг/м3, что позволяет использовать эту нефть в качестве сырья для производства углеводородного топлива повышенной плотности для ракетной техники типа Т-1пп.
Причем запасы нефтей Ванкорского месторождения составляют 520 млн тонн, что позволяет ориентироваться на ее переработку в течение ближайших 30-40 лет.
Преимуществом данного способа является возможность получения углеводородного топлива с повышенной плотностью обычной ректификацией при переработке только нефти Ванкорского месторождения. Использование предложенного способа обеспечивает требуемую плотность, фракционный состав, температуру начала кристаллизации, содержание ароматических углеводородов и др. показателей. соответствующих ГОСТ 10227-86 с изм.1-6 на углеводородное топливо повышенной плотности для ракетной техники Т-1пп.
Предлагаемое техническое решение подтверждено следующими примерами:
Пример 1
Ректификацией нефтей Ванкорского месторождения выделяют фракцию, выкипающую в пределах 130-260°C. Полученная фракция характеризуется плотностью при 20°C - 824 кг/м3, температурой начала кристаллизации - минус 64°C, содержанием ароматических углеводородов 11,4% масс., что соответствует ГОСТ 10227-86 на углеводородное топливо повышенной плотности для ракетной техники.
Пример 2
Ректификацией нефтей Ванкорского месторождения выделяют фракцию, выкипающую в пределах 120-270°C. Полученная фракция характеризуется плотностью при 20°C - 825,7 кг/м3, температурой начала кристаллизации - минус 61°C, содержанием ароматических углеводородов 12,1% масс., что соответствует ГОСТ 10227-86 на углеводородное топливо повышенной плотности для ракетной техники.
Пример 3
Ректификацией нефтей Ванкорского месторождения выделяют фракцию, выкипающую в пределах 120-250°C. Полученная фракция характеризуется плотностью при 20°C - 823,7 кг/м3, температурой начала кристаллизации - минус 66°C, содержанием ароматических углеводородов 11,1% масс., что соответствует ГОСТ 10227-86 на углеводородное топливо повышенной плотности для ракетной техники.
Пример 4
Ректификацией нефтей Ванкорского месторождения выделяют фракцию, выкипающую в пределах 130-270°C. Полученная фракция характеризуется плотностью при 20°C - 826,7 кг/м3, температурой начала кристаллизации - минус 60°C, содержанием ароматических углеводородов 13,1% масс., что соответствует ГОСТ 10227-86 на углеводородное топливо повышенной плотности для ракетной техники.
Таким образом, предлагаемый способ позволяет, используя добываемые нефти Ванкорского месторождения, получить дефицитное высокоплотное углеводородное топливо для ракетной техники, потребности современного рынка в котором не удовлетворены в связи с истощением запасов месторождения Троицко-Анастасиевской нефти (IV горизонт).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА ДЛЯ РАКЕТНОЙ ТЕХНИКИ | 2014 |
|
RU2552442C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА ДЛЯ РАКЕТНОЙ ТЕХНИКИ | 2012 |
|
RU2495083C1 |
СПОСОБ ПОЛУЧЕНИЯ НИЗКОЗАСТЫВАЮЩИХ ТЕРМОСТАБИЛЬНЫХ УГЛЕВОДОРОДНЫХ ФРАКЦИЙ | 2012 |
|
RU2561918C2 |
СПОСОБ ПОЛУЧЕНИЯ ОСНОВЫ ГИДРАВЛИЧЕСКОГО МАСЛА | 1982 |
|
RU1082001C |
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ | 2016 |
|
RU2623088C1 |
АРКТИЧЕСКОЕ ДИЗЕЛЬНОЕ ТОПЛИВО | 2016 |
|
RU2618231C1 |
СПОСОБ ПЕРЕРАБОТКИ НЕСТАБИЛЬНОГО ГАЗОВОГО КОНДЕНСАТА И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2477301C1 |
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНОЙ ОСНОВЫ БУРОВЫХ РАСТВОРОВ С УЛУЧШЕННЫМИ ЭКСПЛУАТАЦИОННЫМИ СВОЙСТВАМИ | 2021 |
|
RU2791610C2 |
Способ гидрооблагораживания вторичных дистиллятов | 2023 |
|
RU2824346C1 |
ВСЕСЕЗОННОЕ УНИВЕРСАЛЬНОЕ ДИЗЕЛЬНОЕ ТОПЛИВО | 2015 |
|
RU2631116C2 |
Изобретение относится к способам получения углеводородного топлива для ракетной техники и может быть использовано в нефтеперерабатывающей промышленности. Изобретение касается способа получения углеводородного топлива повышенной плотности для ракетной техники из нефтей Ванкорского месторождения путем выделения фракции, выкипающей внутри интервала температур 120-270°C с получением топлива. Технический результат - получение дефицитного высокоплотного углеводородного топлива для ракетной техники. 4 пр.
Способ получения углеводородного топлива повышенной плотности для ракетной техники, отличающийся тем, что из нефтей Ванкорского месторождения выделяют фракцию, выкипающую внутри интервала температур 120-270°С с получением целевого топлива.
Е.Н | |||
Романько, О.М | |||
Елашева и др., Нефть Юрубчено-Тохомского месторождения в сопоставлении с нефтями Ванкорского месторождения, Технологии нефти и газа, N1, 2011, с.14-19 | |||
СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДНОГО ТОПЛИВА ДЛЯ РАКЕТНОЙ ТЕХНИКИ | 2012 |
|
RU2495083C1 |
GB 1199097 A, 15.07.1970 |
Авторы
Даты
2015-05-10—Публикация
2014-03-26—Подача