ОКСИД АЛЮМИНИЯ Российский патент 2015 года по МПК C07F7/02 B01J35/10 

Описание патента на изобретение RU2550368C1

Изобретение относится к оксиду алюминия, а именно к триоксиду алюминия в виде порошков или агломератов с частицами, имеющими сотовую пористую структуру, и может быть использовано в качестве носителей катализаторов, адсорбентов и фильтров для химической, пищевой, фармацевтической промышленности.

Известен оксид алюминия с пористой структурой, характеризующейся тем, что в ней не более чем 5% от суммарного объема пор составляют поры больше, чем 350 Å («макропоры»), а также большим объемом пор (более чем 0,8 см3/г, по данным измерений ртутной интрузией) и бимодальным характером распределения объемов пор, т.е. таким распределением объемов пор, в котором в том случае, когда строят зависимость возрастающего объема пор как функцию диаметра пор, полученная функция имеет два максимума (RU, патент №2281161, B01J 21/04, опубл. 10.12.2004 г.).

К недостаткам данного оксида алюминия можно отнести малый диаметр пор, что ограничивает его применение в качестве носителя катализаторов, адсорбента и наполнителя фильтров, в частности в процессах синтеза катализаторов и как осушителя газов, содержащих капельную влагу.

Наиболее близким к заявляемому изобретению является макромезопористый оксид алюминия в виде отдельных частиц, в котором сотовая структура пор обусловлена использованием дрожжей в качестве биошаблона. Пористая структура данного оксида алюминия характеризуется хаотичным расположением макропор с размерами 1,5-3 мкм в виде лабиринта, в стенках которых находятся связанные между собой поры с размерами 3-4,5 нм (Yuan Ma, Qinglian Wei, Ruowen Ling, Fengkai An, Guangyu Mu, Yongmin Huang. Synthesis of macro-mesoporous alumina with yeast cell as bio-template. Microporous and Mesoporous Materials. Elsevier, 165 (2013), p.177-184, 2012).

Недостатком данного оксида алюминия является хаотичное лабиринтное расположение макропор, увеличивающее гидравлическое сопротивление, что затрудняет прохождение участвующих в различных процессах веществ внутрь частиц и доступ к внутренней поверхности оксида алюминия, на которой могут проходить как каталитические реакции, так и адсорбция.

Кроме того, к недостаткам можно также отнести сложность и длительность процесса получения такого оксида алюминия.

В основу изобретения положена задача расширения видов пористого оксида алюминия с сотовой структурой пор в микронном диапазоне размеров. При этом техническим результатом является реализация этого назначения.

Достижение вышеуказанного технического результата обеспечивается тем, что в оксиде алюминия, представленном отдельными частицами с пористой структурой, пористость частиц составляет 60-80%, а пористая структура представлена протяженными, параллельно расположенными каналами с плотной упаковкой, с размером каналов в поперечнике 0,3-1,0 мкм и длиной до 50 мкм.

При использовании такого оксида алюминия облегчается прохождение участвующих в различных процессах веществ внутрь частицы, обеспечивая доступ к внутренней поверхности оксида алюминия, на которой могут проходить как каталитические реакции, так и адсорбция.

Сущность изобретения поясняется графическими материалами. На фиг.1 показана наружная поверхность частицы оксида алюминия с выходящими наружу отверстиями пор, демонстрирующая их плотную упаковку. На фиг.2 показан скол частицы оксида алюминия, обнажающий протяженность параллельно расположенных каналов.

Получение оксида алюминия осуществляется следующим образом.

Кристаллы гексагидрата хлорида алюминия обрабатывают избытком водного раствора аммиака (содержание NH3 - 25 мас.%) при температуре 20-80°C, которая повышается в ходе процесса за счет экзотермического эффекта реакции. Обработанные водным раствором аммиака частицы, визуально сохраняют внешнюю форму и размеры исходных кристаллов гексагидрата хлорида алюминия, но представляют собой (по данным рентгенофазового анализа) гидроксид алюминия в полиморфной модификации бемита (A1OOH). Частицы бемита промывают водой до нейтральной среды, сушат при 105°C до постоянной массы и прокаливают при температуре 650-750°C в течение 1 ч.

Получаемый таким образом оксид алюминия имеет гамма-полиморфную модификацию и содержит, мас.%: Al2O3 98,6; Na2O 0,005; Fe2O3 0,01; SiO2 0,01; Cl-<0,01.

Частицы получаемого оксида алюминия пронизаны параллельно расположенными протяженными каналами (порами), отверстия которых выходят на внешнюю поверхность. Размеры каналов имеют в поперечнике 0,3-1,0 мкм и длину до 50 мкм. Пористость частиц, определенная расчетным методом на основе измерения микрофотографий, составляет 60-80%.

При использовании такого оксида алюминия облегчается прохождение участвующих в различных процессах веществ внутрь, что обеспечивает доступ к внутренней поверхности оксида алюминия, на которой могут проходить как каталитические реакции, так и адсорбция.

При получении такого оксида алюминия не предполагается переосаждение гидратированных соединений алюминия. Таким образом, размер получаемых частиц, а следовательно, и длины пор определяются только изначальным размером кристаллов исходного вещества - гексагидрата хлорида алюминия.

Влагоемкость оксида алюминия, определенная экспериментальным методом, составила 0,62 см3/г. Таким образом, способность предлагаемого вещества поглощать капельную влагу является высокой.

Похожие патенты RU2550368C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА АЛЮМИНИЯ 2013
  • Сенюта Александр Сергеевич
  • Панов Андрей Владимирович
  • Смирнов Андрей Андреевич
RU2547833C1
Катализатор защитного слоя для переработки тяжелого нефтяного сырья 2018
  • Пархомчук Екатерина Васильевна
  • Лысиков Антон Игоревич
  • Семейкина Виктория Сергеевна
  • Полухин Александр Валерьевич
  • Сашкина Ксения Александровна
  • Федотов Константин Владимирович
  • Клейменов Андрей Владимирович
RU2698191C1
КАТАЛИЗАТОР ПЕРЕРАБОТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ФРАКЦИЙ 2012
  • Пархомчук Екатерина Васильевна
  • Сашкина Ксения Александровна
  • Семейкина Виктория Сергеевна
  • Окунев Алексей Григорьевич
  • Лавренов Александр Валентинович
  • Лихолобов Владимир Александрович
RU2506997C1
КАТАЛИЗАТОР ДЛЯ ПЕРЕРАБОТКИ ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2013
  • Пархомчук Екатерина Васильевна
  • Окунев Алексей Григорьевич
  • Сашкина Ксения Александровна
  • Семейкина Виктория Сергеевна
  • Лысиков Антон Игоревич
  • Деревщиков Владимир Сергеевич
RU2527573C1
СПОСОБ УМЕНЬШЕНИЯ ВЯЗКОСТИ МАЗУТА 2012
  • Окунев Алексей Григорьевич
  • Пархомчук Екатерина Васильевна
  • Лысиков Антон Игоревич
  • Деревщиков Владимир Сергеевич
  • Лавренов Александр Валентинович
  • Лихолобов Владимир Александрович
RU2502787C1
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЕМЕТАЛЛИЗАЦИИ НЕФТЯНЫХ ФРАКЦИЙ 2018
  • Болдушевский Роман Эдуардович
  • Виноградова Наталья Яковлевна
  • Гусева Алёна Игоревна
  • Никульшин Павел Анатольевич
  • Дорохов Виктор Сергеевич
  • Юсовский Алексей Вячеславович
RU2691069C1
Бифункциональный катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления 2018
  • Пархомчук Екатерина Васильевна
  • Лысиков Антон Игоревич
  • Семейкина Виктория Сергеевна
  • Полухин Александр Валерьевич
  • Сашкина Ксения Александровна
  • Федотов Константин Владимирович
  • Клейменов Андрей Владимирович
RU2698265C1
СФЕРОИДАЛЬНЫЕ ЧАСТИЦЫ ОКСИДА АЛЮМИНИЯ С УЛУЧШЕННОЙ МЕХАНИЧЕСКОЙ ПРОЧНОСТЬЮ, ИМЕЮЩИЕ СРЕДНИЙ ДИАМЕТР МАКРОПОР, СОСТАВЛЯЮЩИЙ МЕЖДУ 0,05 И 30 мкм 2016
  • Базер-Баши Дэльфин
  • Дальмаццоне Кристин
  • Данде Орели
  • Диль Фабрис
  • Ле Корр Венсан
  • Лопес Жозеф
  • Талеб Анн Лиз
RU2716435C2
Катализатор защитного слоя для переработки тяжелого нефтяного сырья и способ его приготовления 2018
  • Пархомчук Екатерина Васильевна
  • Лысиков Антон Игоревич
  • Семейкина Виктория Сергеевна
  • Полухин Александр Валерьевич
  • Сашкина Ксения Александровна
  • Федотов Константин Владимирович
  • Клейменов Андрей Владимирович
RU2699354C1
Катализатор защитного слоя для реакторов гидрогенизационной переработки нефтяного сырья и способ его получения 2021
  • Болдушевский Роман Эдуардович
  • Гусева Алёна Игоревна
  • Алексеенко Людмила Николаевна
  • Юзмухаметова Рената Фаридовна
  • Юсовский Алексей Вячеславович
  • Никульшин Павел Анатольевич
RU2761528C1

Иллюстрации к изобретению RU 2 550 368 C1

Реферат патента 2015 года ОКСИД АЛЮМИНИЯ

Изобретение относится к оксиду алюминия, представленному отдельными частицами с пористой структурой. При этом пористость частиц составляет 60-80%, а пористая структура представлена протяженными, параллельно расположенными каналами с плотной упаковкой, с размером каналов в поперечнике 0,3-1,0 мкм и длиной до 50 мкм. Структура предлагаемого оксида алюминия позволяет облегчить прохождение участвующих в различных процессах веществ внутрь частицы, обеспечивая доступ к внутренней поверхности оксида алюминия, на которой могут происходить как каталитические реакции, так и адсорбция. 2 ил.

Формула изобретения RU 2 550 368 C1

Оксид алюминия, представленный отдельными частицами с пористой структурой, отличающийся тем, что пористость частиц составляет 60-80%, а пористая структура представлена протяженными, параллельно расположенными каналами с плотной упаковкой, с размером каналов в поперечнике 0,3-1,0 мкм и длиной до 50 мкм.

Документы, цитированные в отчете о поиске Патент 2015 года RU2550368C1

W.DENG ET AL., Surfactant-Assisted Synthesis of Alumina with Hierarchical Nanopores, ADVANCED FUNCTIONAL MATERIALS, 2003, vol.13, no.1, pp.61-65
Y.MA ET AL., Synthesis of macro-mesoporous alumina with yeast cell as bio-template, MICROPOROUS AND MESOPOROUS MATERIALS, 2013, vol.165, pp.177-184
Колосоуборка 1923
  • Беляков И.Д.
SU2009A1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
ОКСИД АЛЮМИНИЯ, ОБЛАДАЮЩИЙ НОВОЙ СТРУКТУРОЙ ПОР, СПОСОБ ЕГО ПОЛУЧЕНИЯ И КАТАЛИЗАТОР, ИЗГОТОВЛЕННЫЙ НА ЕГО ОСНОВЕ 2001
  • Джинестра Джозиан Мари-Роуз
  • Мишел Кристиан Гэбриел
  • Аккерман Расселл Крэйг
RU2281161C2

RU 2 550 368 C1

Авторы

Сенюта Александр Сергеевич

Панов Андрей Владимирович

Смирнов Андрей Андреевич

Даты

2015-05-10Публикация

2013-02-04Подача