Настоящее изобретение относится к области тепловых измерений и может быть использовано при исследовании теплообмена и управления процессами в металлургии, энергетике и других отраслях народного хозяйства.
Из существующего уровня известен способ измерения тепловых потоков, сущность которого заключается в измерении двумя гипертермопарами, расположенными одна за другой, двух перепадов температур на чувствительном элементе, вычислении скорости изменения перепада температур, измеренного второй гипертермопарой, и определении нестационарного теплового потока по формуле (см. а.с. СССР N 1045011, G01K 17/08, 1982 г.).
Недостатком способа является низкая точность измерения нестационарного теплового потока.
Из известных способов наиболее близким по технической сущности является способ измерения нестационарного теплового потока (см. а.с. СССР N 1024751, G01K 17/08, 1981 г.), заключающийся в измерении перепада температур на чувствительном элементе, скорости изменения температуры на приемной и обратной поверхности чувствительного элемента и определении величины нестационарного потока по формуле
где λ, с, ρ, b - теплопроводность, теплоемкость, удельная плотность и толщина чувствительного элемента;
t0, tb - температуры приемной и обратной поверхностей чувствительного элемента;
Недостатком способа является низкая точность измерения нестационарного теплового потока вследствие большой динамической погрешности и погрешности из-за влияния конвективного теплообмена боковой поверхности тепломера.
В основу изобретения положена задача разработать способ, обеспечивающий повышение точности определения нестационарного теплового потока.
Для решения поставленной задачи в известном способе измерения нестационарного теплового потока, включающем измерение разности и скорости изменения средних температур приемной и обратной поверхностей тепломера, дополнительно измеряют в сечениях тепломера скорость изменения средней по площади температуры и температуру в точках его боковой поверхности, а тепловой поток определяют по формуле
где λ, С - теплопроводность и объемная теплоемкость материала тепломера;
H, S, τ - толщина, площадь поперечного сечения тепломера и время;
pk - весовой коэффициент при средней скорости изменения температуры;
m+1 - количество сечений тепломера, в которых измеряется скорость изменения средней температуры;
Дополнительное измерение в сечениях тепломера скорости изменения средней по площади температуры и температуры в точках его боковой поверхности позволяет уменьшить динамическую погрешность измерения теплового потока и учесть влияние конвективного теплообмена боковой поверхности тепломера.
Для обоснования повышения точности необходимо рассмотреть основные положения теории, на которой базируется заявленный способ. Он основан на математическом описании теплопередачи в объекте исследования в виде интегральной формы уравнения теплопроводности. Для тепломера, имеющего форму цилиндра с радиусом основания R и толщиной H, который одним основанием воспринимает измеряемый нестационарный тепловой поток, а на боковой поверхности действует конвективный тепловой поток, интегральная форма уравнения теплопроводности имеет вид
где
Для тепломера в виде параллелепипеда интегральная форма отличается видом выражения для определения среднего по толщине конвективного теплового потока
где
В простейшем случае, когда распределение температуры по толщине тепломера одномерно, т.е. отсутствует теплообмен с боковой поверхности, и близкое к линейному, то формула для определения повторного интеграла принимает вид
Тогда из интегральной формы уравнения теплопроводности можно получить расчетную формулу прототипа:
Чем больше количество точек на заданной толщине тепломера, тем выше степень полинома, который описывает распределение температуры, что соответствует уменьшению погрешность определения повторного интеграла и, следовательно, увеличению точности определения нестационарного теплового потока Графики, представленные на фиг.1 и фиг.2, иллюстрируют эффект дополнительного измерения температуры и скорости ее изменения в точках тепломера.
На фиг.1 показан пример изменения во времени плотности теплового потока, действующего на поверхности тепломера (сплошная тонкая линия), значения, рассчитанные по формуле заявляемого способа (символы) и по прототипу (полужирная линия). На фиг.2 приведены погрешности определения теплового потока для данного изменения теплового потока, рассчитанные по формуле заявленного способа: по шести точкам (); по четырем точкам с координатами - х=0r=0,75R, х=0,333H, r=0,75R, х=0,666H, r=0,75R, х=H, r=0,75R (); по двум точкам с координатами - x0=0, r=0,75R; х=0,5H r=0,75R (); и рассчитанные по формулам аналога () и прототипа () (R=2,5 мм, H=1,2 мм). Погрешность по аналогу и прототипу находится в пределах от -40% до -60% и от -40% до 20%. Погрешность по заявленному способу, в зависимости от числа используемых точек, изменяется от ±0,5%, до ±2%. Повышение точности определения теплового потока достигнута за счет уменьшения динамической погрешности и учета влияния конвективного теплообмена боковой поверхности. Сущность изобретения поясняется чертежами, на которых изображено:
На фиг.1 - график изменения во времени плотности теплового потока, действующего на поверхности тепломера (сплошная тонкая линия), и значения, рассчитанные по формуле заявляемого способа (символы), и по прототипу (полужирная линия).
На фиг.2 - погрешности определения теплового потока, рассчитанные по формуле заявленного способа с различным количеством точек, по формулам аналога () и прототипа ().
На фиг.3 - пример реализации заявленного способа.
Устройство, реализующее заявленный способ, состоит из тепломера 1 в виде цилиндра с радиусом основания R и устройства для обработки аналоговых сигналов. В нем использована приближенная формула определения повторного интеграла по двум точкам, одна из которых находится в среднем сечении, и которая является точной для параболического распределения температуры по толщине тепломера. В тепломере установлены: дифференциальная термопара 2 и термобатарея 3, рабочие спаи которых имеют координаты: х=0 r=0,75R, х=0,5Н r=0,75R, х=Н r=0,75R, измеряющие средние температуры по площади основания цилиндра в соответствующих сечениях тепломера по координате х. Устройство содержит: усилители термо-э.д.с. 4 и 5 для сигналов, пропорциональных соответственно разности температур и взвешенной суммы температур, дифференциатор 6, масштабирующий делитель напряжения 7 для получения сигнала, пропорционального величине поправки на теплообмен боковой поверхности
Данный способ прошел экспериментальные исследования на лабораторной установке и теоретические исследования на различных одно- и двухмерных моделях тепломеров методом имитационного моделирования При вычислении погрешности определения теплового потока были использованы результаты имитационного моделирования его измерения на двухмерной модели с дискретностью по координатам h=0,1 мм цилиндрического тепломера диаметром D=5 мм и толщиной H=1,2 мм, имеющего теплопроводность λ=0,3 Вт/(м·К) и температуропроводность а=1,5 м2/с. На боковой поверхности и противоположной принимающей были приняты граничные условия 3 рода с коэффициентом теплообмена соответственно α=50 Вт/(м2·К) и α=100 Вт/(м2·K).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ ТЕПЛОПРОВОДНОСТИ И ТЕПЛОВОГО СОПРОТИВЛЕНИЯ СТРОИТЕЛЬНОЙ КОНСТРУКЦИИ | 2011 |
|
RU2527128C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ТВЕРДОГО ТЕЛА АКТИВНЫМ МЕТОДОМ ТЕПЛОВОГО НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ | 2012 |
|
RU2488102C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ ВЫСОКОТЕПЛОПРОВОДНЫХ МАТЕРИАЛОВ | 2013 |
|
RU2551389C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ НЕСТАЦИОНАРНОГО ТЕПЛОВОГО ПОТОКА | 2022 |
|
RU2787300C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ИЗОТРОПНЫХ МАТЕРИАЛОВ | 2013 |
|
RU2544891C1 |
СПОСОБ АВТОМАТИЧЕСКОГО МОНИТОРИНГА И ПРОГНОЗА ТЕКТОНИЧЕСКИХ ПРОЦЕССОВ С ВЫБОРОМ МЕСТА И ВРЕМЕНИ ВОЗДЕЙСТВИЯ НА ЗЕМЛЕТРЯСЕНИЯ И ВУЛКАНЫ | 2011 |
|
RU2488853C2 |
СПОСОБ ОЦЕНКИ РАЗЛИЧИЯ ТЕПЛОФИЗИЧЕСКИХ ПАРАМЕТРОВ ВИДИМОЙ ПОВЕРХНОСТИ ИЗОТРОПНОГО ОБЪЕКТА С УЧЕТОМ ФОНА | 2013 |
|
RU2544894C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СТЕПЕНИ ЧЕРНОТЫ | 2012 |
|
RU2521131C2 |
УСТРОЙСТВО ОПРЕДЕЛЕНИЯ СОПРОТИВЛЕНИЯ ТЕПЛОПЕРЕДАЧИ МНОГОСЛОЙНОЙ КОНСТРУКЦИИ В РЕАЛЬНЫХ УСЛОВИЯХ ЭКСПЛУАТАЦИИ | 2011 |
|
RU2512663C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОМПЛЕКСА ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВ ТВЕРДЫХ МАТЕРИАЛОВ | 2008 |
|
RU2374631C2 |
Изобретение относится к области тепловых измерений и может быть использовано при исследовании теплообмена и управления процессами в металлургии, энергетике и других отраслях народного хозяйства. Способ заключается в измерении разности и скорости изменения средних температур приемной и обратной поверхностей тепломера. Новизна способа заключается в том, что дополнительно измеряют скорости изменения средней по площади температуры в сечениях тепломера и температуры в точках его боковой поверхности. Технический результат - увеличение точности определения нестационарного теплового потока. 3 ил.
Способ определения нестационарного теплового потока, заключающийся в измерении разности и скорости изменения средних температур приемной и обратной поверхностей тепломера, отличающийся тем, что дополнительно измеряют в сечениях тепломера скорость изменения средней по площади температуры и температуру в точках его боковой поверхности, а тепловой поток определяют по формуле
где λ, С - теплопроводность и объемная теплоемкость материала тепломера;
Н, S, τ - толщина, площадь поперечного сечения тепломера и время;
pk - весовой коэффициент при средней скорости изменения температуры;
m+1 - количество сечений тепломера, в которых измеряется скорость изменения средней температуры:
Способ измерения нестационарного теплового потока и устройство для его осуществления | 1981 |
|
SU1024751A1 |
СПОСОБ ИЗМЕРЕНИЯ СРЕДНИХ ПО ВРЕМЕНИ ЗНАЧЕНИЙ НЕСТАЦИОНАРНЫХ ТЕПЛОВЫХ ПОТОКОВ | 0 |
|
SU218483A1 |
Способ измерения нестационарного теплового потока | 1982 |
|
SU1045011A1 |
Устройство для измерения нестационарного теплового потока | 1989 |
|
SU1686317A1 |
Измеритель нестационарного теплового потока | 1990 |
|
SU1728681A1 |
Авторы
Даты
2015-05-27—Публикация
2013-12-11—Подача