СПОСОБ ОПРЕДЕЛЕНИЯ ТИОСУЛЬФАТА НАТРИЯ В РАСТВОРАХ Российский патент 2015 года по МПК G01N31/16 G01N33/15 

Описание патента на изобретение RU2552311C2

Изобретение относится к аналитической химии и может быть использовано в системе контроля за содержанием тиосульфата натрия в растворах.

Вопросы контроля качества и стандартизации лекарственных средств (ЛС) усиливают свою актуальность в настоящее время в связи с общим увеличением числа зарегистрированных в России лекарственных средств: за последние пять лет с 3,5 тысяч до 13,5 тысяч, поступающих, как правило, от разных производителей [Е.В. Дегтерев Анализ лекарственных средств в исследованиях, производстве и контроле качества / Дегтерев Е.В. / Рос. хим. ж. - 2002. - Т. XLVI, №4. - С.43-51].

Контроль доброкачественности ЛС, согласно правилам GLP, проводится по трем направлениям: установление подлинности, анализ чистоты и количественное определение действующего вещества. Для аналитического контроля доброкачественности ЛС на этапе производства целесообразно использовать простые, но надежные и производительные экспрессные методики анализа. Несмотря на то, что в настоящее время для определения действующего вещества в ЛС набольшее применение получили инструментальные методы, не утратили своего значения и титриметрические (объемные), достоинствами которых является простота исполнения, возможность введения новых титрантов и индикаторов, а также разработка новых приемов определения. Согласно Государственной Фармакопеи (ГФ), для определения тиосульфата натрия наибольшее применение получил йодометрический метод [Арзамасцев А.П. Анализ лекарственных смесей / А.П. Арзамасцев, В.М. Печенников, В.Л. Дорофеев, Э.Н. Аксенова / М: Компания спутник +. - 2000. - 275 с.], основным недостатком которого является необходимость стандартизации титранта, затруднения его хранения и проведение рутинного анализа. Устранить данные недостатки позволяет применение инструментальных способов определения тиосульфата натрия.

Известен фотометрический способ определения тиосульфата натрия, основанный на восстановлении его боргидридом калия до сульфида, взаимодействие последнего с N,N-диметил-n-фенилендиамином в присутствии солей трехвалентного железа [ГОСТ 25063.1-81 Материалы фотографические. Метод определения тиосульфата Государственный комитет СССР по стандартам. Москва. - 1982. - С.7].

Образуемая фотометрируемая форма нестабильна и способна разрушаться под действием кислорода воздуха, что в конечном итоге приводит к уменьшению воспроизводимости полученных результатов.

Известен способ количественного определения тиосульфата натрия йодометрическим методом, в основу которого положена реакция его взаимодействия с йодом [Г.А. Мелентьева, Л.А. Антонова. Фармацевтическая химия. М.: Медицина. - 1986. - с.91, Международная фармакопея (третье издание). - Т.3. Спецификация для контроля качества фармацевтических препаратов. Всемирная организация здравоохранения. Женева. - 1990. - с.236].

Основным недостатком предложенного метода является необходимость стандартизации титранта, строгое соблюдение условий его хранения.

Известен способ определения тиосульфата натрия в проявляюще-фиксирующем растворе, включающий введение в анализируемую пробу при pH=8,1-8,3 формалина, подкисление раствора, введение йода и последующее титрование избытка йода стандартным раствором тиосульфата натрия, при этом с целью повышения точности анализа в присутствии сульфита натрия, едкого натра, гидрохинона и метилфенидона, формалин вводят в соотношении с пробой, равном 0,7-0,9:1, и подкисление проводят серной кислотой до pH=1,1-1,3. SU 548808 МПК Кл.2 G01N 31/16, C01B 17/64, опубл. 28.02.77.

Однако данный способ используется для определения тиосульфата натрия в проявляюще-фиксирующем растворе, а при определении в лекарственных препаратах он не применяется. Основным недостатком метода является необходимость стандартизации титранта и применение рутинного анализа.

Наиболее близким к заявленному изобретению является кулонометрический способ определения натрия тиосульфата, основанный на взаимодействии электрогенерированного йода при pH 1,2 с определяемым веществом [Абуллина С.Г. Новые аспекты применения гальваностатической кулонометрии в фармацевтическом анализе. Автореферат диссертации на соискание ученой степени доктора фармацевтических наук. - Москва, Всероссийской научно-исследовательской институт лекарственных и ароматических растений (ВИЛАР)РАСХН, 2012. - 49 с.].

Недостатком рассмотренного способа определения является сложность аппаратурного оформления.

Задачей настоящего изобретения является разработка экспрессного и достоверного способа определения тиосульфата натрия в растворах.

Технический результат заявленного изобретения состоит:

- в упрощении способа определения за счет применения в качестве титранта фотогенерированного йода, при сохранении точности и предела обнаружения;

- отсутствие дорогостоящего оборудования.

Это достигается тем, способ определения тиосульфата натрия в растворах, характеризующийся введением анализируемой пробы в реакционный сосуд, содержащий соответствующее количество фотогенерированного йода, полученного путем продувания 1-2 минуты воздухом и облучения стабилизированным источником света реакционной смеси, состоящей из 0,5 М раствора йодида калия, ацетатного буферного раствора с pH 5, 6 и сенсибилизатора эозината натрия, фиксированием изменения тока в ячейке и по достижении его постоянства повторным продуванием реакционной смеси воздухом в течение 2-3 минут и повторным ее облучением стабилизированным источником света до достижения исходного количества йода в сосуде, фиксированием времени генерации йода, затраченного на восполнение его убыли, определением количества тиосульфата натрия по градуировочному графику по изменению силы тока и времени генерации.

Сущность заявленного изобретения состоит в том, что в ячейке происходит изменение количества йода в результате химического взаимодействия натрия тиосульфата с титрантом, что приводит к уменьшению силы тока в амперометрической цепи. После достижения постоянства силы тока в амперометрической цепи поглотительный раствор вновь продували воздухом в течение 1-2 мин, повторно облучали светом до достижения исходного количества йода в сосуде и измеряли время генерации, пошедшее на восполнение убыли йода. Поглотительный раствор в ячейке заменяли после выполнения 20-30 анализов. Количество натрия тиосульфата в образце определяли по градуировочным графикам. См. рис. 1, 2. Результаты определения приведены в таблицах 1, 2. Достоверность полученных результатов подтверждали методами добавок и йодометрическим методом, рекомендованным ГОС фармацией [Международная фармакопея (третье издание). - Т.3. Спецификация для контроля качества фармацевтических препаратов. Всемирная организация здравоохранения. Женева.- 1990. - с. 236].

Способ, рекомендованный ГОС фармацией, - объемный, требует большего количества препарата, необходимость стандартизации титранта, визуального фиксирования точки эквивалентности и, как следствие, приводит к увеличению времени единичного определения и низкой воспроизводимости результатов. Предложенный метод автоматизирован, что исключает наличие визуальной ошибки, не требует дорогостоящего оборудования, что позволяет использовать его в условиях обычной контрольно-аналитической лаборатории.

Осуществления способа приведено в примере 1.

Пример 1. Для осуществления способа использовали раствор тиосульфата натрия для инъекций (ОАО «Эксом» г. Ставрополь, Староморьевское шоссе, 9 Г, серия 090313).

1 мл раствора для инъекций количественно переносили в мерную колбу емкостью 250 и доводили до метки бидистиллированной водой. Рабочий раствор анализируемого образца получали повторным разбавлением в 200 раз.

В сосуд для титрования (рис.3) помещали 40 мл 0,5 М раствора йодида калия, 10 мл раствора эозината натрия, 20 мл ацетатного буферного раствора с pH 5,6. Для получения фотогенерированного йода ячейку продувают 1-2 минуты воздухом и облучают стабилизированным источником света. Йод генерируют со скоростью 2,53·10-7 ммоль/с до содержания его 4·10-4 ммоль. О концентрации титранта судили по изменению силы тока в цепи амперометрической ячейки. После генерации йода отключали источник света и вводили 1 мл рабочего раствора, фиксируя при этом изменение показаний гальванометра. После достижения постоянства силы тока ячейку вновь продували воздухом в течение 2-3 минут, повторно облучали светом до достижения исходного количества йода в сосуде и измеряли время генерации, необходимое для восполнения убыли йода.

Для проведения последующих определений раствор, находящийся в сосуде для титрования, снова облучали светом, генерируя в нем определенное количество йода. Один и тот же поглотительный раствор позволяет проводить 10-20 определений. Содержание тиосульфата натрия определяли по градуировочным графикам, полученным по стандартным растворам (рис.1, 2). Достоверность полученных результатов контролировали по стандартной методике и методом добавок. Результаты определения натрия тиосульфата в растворе для инъекций представлены в таблицах 1, 2, 3.

Рис.1. График зависимости изменения силы тока от количества определяемого тиосульфата натрия (ΔΔn=5,0337m; R2=1)

Рис.2. График зависимости изменения силы тока от количества определяемого тиосульфата натрия (ΔΔτ=3,1328m; R2=1)

Рис.3. Установка для титрования веществ фотогенерированным йодом: 1 - сосуд для титрования; 2 - источник света; 3 - теплозащитный фильтр; 4 - магнитная мешалка; 5 - магнит; 6 - электроды; 7 - источник тока; 8 - делитель напряжения; 9 - гальванометр; 10 - вольтметр.

Результаты определения тиосульфата натрия, найденные фотохимическим методом по времени генерации (табл.1) и изменению силы тока (табл.2) согласуются между собой, а также с результатами, полученными по стандартной методике [Г.А. Мелентьева, Л.А. Антонова. Фармацевтическая химия. М.: Медицина. - 1986. - с.91, Международная фармакопея (третье издание). - Т.3. Спецификация для контроля качества фармацевтических препаратов. Всемирная организация здравоохранения. Женева. - 1990. - с.236]. Нижний предел определения тиосульфата натрия составляет 0,2 мкг по силе тока и 0,32 мкг по времени генерации йода в поглотительной ячейке.

Таблица 1 Результаты определения тиосульфата натрия в растворе для инъекций, найденное по времени генерации (n=5, p=0,95) Анализируемая проба Введено, мкг ΔΔτ, с Найдено, мкг Sr, % Найдено в мг/мл Фотохимический метод Sr, % по ГОС фармации Sr, % Раствор для инъекций - натрий тиосульфат 0,0 18,7 5,98±0,30 5,0 299,0±14,6 4,9 299,0±15,0 5,0 5,0 34,4 10,98±30,42 3,8 299,0±14,6 4,9 300,0±15,0 5,0 10,0 50,1 15,97±0,45 2,8 298,5±14,6 4,9 299,5±15,0 5,0 0,0 18,8 6,01±0,30 5,0 300,5±14,5 4,8 299,7±14,5 4,8 5,0 34,5 11,01±0,42 3,8 300,5±14,5 4,8 299,5±14,5 4,8 10,0 50,1 15,97±0,45 2,8 298,5±14,5 4,9 299,0±14,5 4,8

Таблица 2 Результаты определения тиосульфата натрия в растворе для инъекций, найденное по изменению силы тока (n=5, р=0,95) Анализируемая проба Введено, мкг ΔΔn, дел Найдено, мкг Sr, % Найдено в мг/мл Фотохимический метод Sr, % по ГОС фармации Sr, % Раствор для инъекций - натрий тиосульфат 0,0 30,0 5,95±0,30 5,0 297,5±14,6 4,9 299,0±15,0 5,0 5,0 55,2 10,95±0,43 3,9 297,5±14,6 4,9 300,0±15,0 5,0 10,0 80,3 15,93±0,47 3,0 296,5±14,7 5,0 299,5±15,0 5,0 0,0 30,1 5,97±0,30 5,0 298,5±14,6 4,9 299,7±14,5 4,8 5,0 55,3 10,97±0,43 3,9 298,5±14,6 4,9 299,5±14,5 4,8 10,0 80,5 15,97±0,47 2,9 298,5±14,6 4,9 299,0±14,5 4,8

Проведена валидационная оценка методики фотохимического определения тиосульфата натрия в растворе для инъекций по показателям - специфичность, линейность и аналитическая область методики, правильность и воспроизводимость. Специфичность, оцененная методом «введено - найдено», показала отсутствие влияния вспомогательных веществ (табл.1, 2) на определение тиосульфата натрия в растворе для инъекций. Зависимость между изменением силы тока (временем генерации) в цепи амперометрической установки и массой тиосульфата натрия имеет линейный характер, значение коэффициента линейной корреляции составляет 1,0000. Правильность и воспроизводимость оценивали путем сравнения полученных результатов с опорными значениями. Статистическая обработка 7 определений (табл.3) показала, что относительное стандартное отклонение составляет 0,3.

Опорное значение содержания тиосульфата натрия (300 мг/мл) лежит внутри доверительного интервала среднего значения (298,7±0,340 по силе тока, так и 298,9±0,278 по времени генерации), следовательно, систематическая ошибка отсутствует. Метод фотохимического титрования дает правильные результаты. Методика валидна по показателям специфичность, линейность и аналитическая область методики, правильность и воспроизводимость. Относительная ошибка среднего фотохимического определения тиосульфата натрия в растворе для инъекций составляет 0,4%.

Таблица 3 Метрологические характеристики методик фотохимического определения тиосульфата натрия в растворе для инъекций (р=0,95) Анализируемая проба Фотохимический метод по ГОС фармации по времени генерации по изменению силы тока Найдено, мг/мл Метрологические характеристики Найдено, мг/мл Метрологические характеристики Найдено, мг/мл Метрологические характеристики Раствор для инъекций - натрий тиосульфат 299,0 Хср=298,9 298,5 Хср=298,7 299,5 Хср=299,7 299,0 ΔХср=0,3 299,0 ΔХср=0,3 300,0 ΔХср=0,3 299,0 Sx=0,2236 298,5 Sx=0,2739 299,5 Sx=0,2550 299,0 Sr=0,001 299,0 Sr=0,001 299,7 Sr=0,001 298,5 εср=0,28% 298,5 εср=0,34% 300,0 εср=0,32%

Фотогенерированный йод может быть использован для стандартизации раствора тиосульфата натрия. Осуществление способа приведено в примере 2.

Пример 2. Для осуществления способа готовили водный раствор тиосульфата натрия. Для этого 0,5000 г тиосульфата натрия (ч.д.а.) количественно перенесли в мерную колбу емкостью 250 мл и объем доводили до метки бидистиллированной водой. Рабочий раствор (2 мкг/мл) получали повторным разбавлением в 1000 раз.

Дальнейшее определение проводили по вышеуказанной методике. Результаты определения приведены в таблицах 4, 5.

Результаты определения тиосульфата натрия, найденные фотохимическим методом по времени генерации (табл.4) и изменению силы тока (табл.5), согласуются между собой, а также с результатами, полученными по стандартной методике [Г.А. Мелентьева, Л.А. АнтоноваФармацевтическая химия. М.: Медицина. - 1986. - с.91. Международная фармакопея (третье издание). - Т.3 Спецификация для контроля качества фармацевтических препаратов. Всемирная организация здравоохранения. Женева. - 1990. - с.236]. Относительное стандартное отклонение при определении тиосульфата натрия до 18,0 мкг не превышает 5,00%

Таблица 5 Результаты определения тиосульфата натрия в водном растворе, найденные по изменению силы тока (n=5, р=0,95) Введено тиосульфата натрия Δn, дел ΔΔn, дел Найдено в мкг Фотохимический метод Sr, % по ГОС фармации, Sr, % V, мл m N a 2 S 2 O 3 ,  мкг 0,0 0,0 2,0 - - - - 1,0 2,0 11,9 9,9 1,98±0,10 5,1 1,98±0,11 5,6 2,0 4,0 22,0 20,0 3,98±0,18 4,5 4,00±0,18 4,5 3,0 6,0 32,1 30,1 6,00±0,18 3,0 6,00±0,18 3,0 4,0 8,0 41,9 39,9 7,94±0,24 3,0 7,98±0,24 3,0 5,0 10,0 52,5 50,2 9,96±0,28 2,8 10,0±0,28 2,8 6,0 12,0 62,8 60,8 12,06±0,33 2,7 11,96±0,33 2,8 7,0 14,0 72,2 70,2 13,94±0,38 2,7 14,00±0,38 2,7 8,0 16,0 82,1 80,1 15,92±0,44 2,8 15,90±0,44 2,8 9,0 18,0 92,5 90,5 17,98±0,49 2,7 17,90±0,49 2,7

Таблица 4 Результаты определения тиосульфата натрия в водном растворе, найденные по времени генерации (n=5, р=0,95) Введено тиосульфата натрия Δτ, с ΔΔτ, с Найдено в мкг Фотохимический метод Sr, % по ГОС фармации Sr, % V, мл m N a 2 S 2 O 3 ,  мкг 0,0 0,0 1,5 - - - - - 1,0 2,0 7,6 6,1 1,95±0,10 5-1 1,98±0,11 5,6 2,0 4,0 24,0 12,5 3,97±0,17 4,3 4,00±0,18 4,5 3,0 6,0 20,2 18,7 5,97±0,18 3,0 6,00±0,18 3,0 4,0 8,0 26,5 25,0 7,97±0,23 2,9 7,98±0,24 3,0 5,0 10,0 32,9 31,4 10,03±0,27 2,7 10,0±0,28 2,8 6,0 12,0 39,2 37,7 12,03±0,33 2,7 11,96±0,33 2,8 7,0 14,0 45,4 43,9 14,00±0,37 2,6 14,00±0,38 2,7 8,0 16,0 51,7 50,2 16,00±0,45 2,8 15,90±0,44 2,8 9,0 18,0 57,8 56,3 17,95±0,48 2,7 17,90±0,49 2,7

Замена водного растворителя на органический приводит к изменению условий генерации йода, что сказывается на результатах определения тиосульфата натрия.

Первоначально была откалибрована установка в присутствии этилового спирта, ацетона и уксусной кислоты. Для этого измеряли показания гальванометра в отсутствие и в присутствии растворителей при добавлении раствора йода из микробюретки в систему, содержащую 40 мл 0.5 М раствора йодида калия, 20 мл ацетатного буферного раствора с pH 5,6. Результаты определения представлены в табл.6 и на рис.4.

Таблица 6 Зависимость показаний гальванометра от концентрации йода в присутствии органических растворителей ( C I 2 1·10-4 М) Введено йода Показания гальванометра, n V, мл С·104, ммоль H2O органические растворители C2H5OH CCl4 СН3СООН 0,0 0,0 0,0 0 0 0,0 0,4 0,4 19,9 16,0 14,8 20,0 0,6 0,6 32,0 24,1 22,1 32,0 0,8 0,8 42,0 32,0 29,5 42,0 1,0 1,0 51,0 39,8 37,0 51,0 1,5 1,5 74,0 60,0 55,5 74,0 2,0 2,0 100,0 79,8 73,5 100,0

Рис.4. Зависимость показаний гальванометра от концентрации йода в водном растворе (1) и в присутствии 0,02 ммоль этанола (2), четыреххлористого углерода (3) и уксусной кислоты (4).

Из данных представленных в табл.6 и на рис.4 следует, что цена деления шкалы гальванометра по йоду в водных растворах и в присутствии уксусной кислоты одинакова (2,0·10-6 ммоль/дел), что свидетельствует об отсутствии протекания химической реакции между растворителем и реагентом.

Цена деления шкалы гальванометра по йоду в присутствии этилового спирта составляет 2,5·10-6 ммоль/дел, а в присутствии четыреххлористого углерода - 2,7·10-6 ммоль/дел. При этом в этих растворителях наблюдается линейная зависимость между показаниями гальванометра и концентрацией йода. Уменьшение чувствительности можно связать с частичным окислением спирта и испарением четыреххлористого углерода.

Введение ледяной уксусной кислоты, используемой в качестве растворителя, в раствор может привести к изменению pH, что повлечет к изменению скорости генерации йода. Авторами работы рекомендовано проводить фотогенерацию йода при оптимальных значениях pH 5÷9 [Додин Е.И. Фотохимический анализ / Е.И. Додин. М.: Металлургия. 1979. - С.54], которое создается использованием ацетатного буферного раствора.

Исследование влияния уксусной кислоты на изменение буферной емкости раствора, содержащего 40 мл 0,5 М раствора йодида калия, 20 мл ацетатного буферного раствора с pH 5,6 приведено в табл.7.

Таблица 7 Зависимость показаний pH-метра от количества уксусной кислоты, введенной в реакционную смесь Введено уксусной кислоты, ммоль 0,005 0,010 0,020 0,100 0,200 0,300 0,400 pH 5,58 5,57 5,54 5,37 5,22 5,11 5,02

Из полученных данных следует, что при концентрации уксусной кислоты менее 0,200 ммоль pH раствора остается практически постоянной. Следовательно, использование раствора уксусной кислоты в качестве растворителя не должно влиять на скорость генерирования йода (табл.8, рис.5).

Таблица 8 Зависимость показаний гальванометра от времени генерации йода при разных концентрациях уксусной кислоты Время генерации йода τ, с Показания гальванометра при концентрации уксусной кислоты в растворе, ммоль 0,00 0,02 0,20 0 0 0 0 10 16 16 15 20 32 32 31 30 48 48 48 40 64 64 63 50 80 80 79

Рис.5. Зависимость показаний гальванометра от времени генерации йода в отсутствии (1) и в присутствии (2) уксусной кислоты.

Из полученных данных видно, что скорость генерирования йода в водном растворе и в присутствии уксусной кислоты одинакова (2,53·10-7 ммоль/с), что вновь подтверждает отсутствие протекания химической реакции. Таким образом, уксусную кислоту можно использовать в качестве растворителя для перевода анализируемого вещества в раствор.

Применение уксусной кислоты для перевода тиосульфата натрия в раствор осуществлено в примере 3.

Пример 3. Для осуществления способа использовали водный раствор тиосульфата натрия. Для этого 0,5000 г тиосульфата натрия (ч.д.а.) количественно переносили в мерную колбу емкостью 250 мл, содержащую 10 мл ледяной уксусной кислоты, и объем доводили до метки бидистиллированной водой. Рабочий раствор (2 мкг/мл) получали повторным разбавлением в 1000 раз.

Дальнейшее определение проводили по вышеуказанной методике. Результаты определения приведены в таблицах 9, 10.

Таблица 9 Результаты определения тиосульфата натрия в уксуснокислой среде, найденные по изменению силы тока (n=5, р=0,95) Введено тиосульфата натрия Δn, дел ΔΔn, дел Найдено в мкг Фотохимический метод Sr, % по ГОС фармации Sr, % V, мл m N a 2 S 2 O 3 ,  мкг 0,0 0,0 2,0 - - - - 2,0 4,0 22,0 20,0 3,98±0,18 4,5 3,97±0,18 4,5 4,0 8,0 42,0 40,0 7,96±0,25 3,1 7,90±0,24 3,0 6,0 12,0 62,4 60,4 11,98±0,33 2,8 11,96±0,33 2,8 8,0 16,0 82,0 80,0 15,90±0,44 2,8 15,90±0,44 2,8

Таблица 10 Результаты определения тиосульфата натрия в уксуснокислой среде, найденные по времени генерации (n=5, р=0,95) Введено тиосульфата натрия Δτ, с ΔΔτ, с Найдено в мкг Фотохимический метод Sr, % по ГОС фармации Sr, % V, мл m N a 2 S 2 O 3 ,  мкг 0,0 0,0 1,5 - - - - - 2,0 4,0 24,0 12,5 3,97±0,17 4,3 4,00±0,18 4,5 4,0 8,0 26,5 25,0 7,97±0,24 3,0 7,98±0,24 3,0 6,0 12,0 39,0 37,5 11,96±0,32 2,7 11,96±0,33 2,8 8,0 16,0 51,5 50,0 15,95±0,44 2,8 15,90±0,44 2,8

Из данных табл.9, 10 следует, что полученные результаты характеризуются хорошей воспроизводимостью. Относительное стандартное отклонение при определении тиосульфата натрия в уксусно-водной среде не превышает 5,0%. Следовательно, уксусную кислоту можно использовать в качестве растворителя для количественного определения тиосульфата натрия.

Таким образом, предложенный фотохимический способ определения тиосульфата натрия в растворах экспрессен, не требует дорогостоящего оборудования, что позволяет использовать его в условиях обычной контрольно-аналитической лаборатории.

Похожие патенты RU2552311C2

название год авторы номер документа
Способ определения содержания толперизона гидрохлорида в твердой дозированной лекарственной форме 2023
  • Турусова Елена Васильевна
  • Насакин Олег Евгеньевич
RU2822628C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОИЗВОДНЫХ НИТРОФУРАНА, ПИРАЗОЛА, ИЗОНИКОТИНОВОЙ КИСЛОТЫ, ТИОАМИНОКИСЛОТ В ЛЕКАРСТВЕННЫХ ФОРМАХ 2011
  • Турусова Елена Васильевна
  • Насакин Олег Евгеньевич
  • Лыщиков Анатолий Николаевич
RU2479840C2
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОПРИМЕСЕЙ МЫШЬЯКА И СУРЬМЫ В РАСТИТЕЛЬНОМ ЛЕКАРСТВЕННОМ СЫРЬЕ 2015
  • Турусова Елена Васильевна
  • Григорьева Людмила Алексеевна
  • Насакин Олег Евгеньевич
  • Лыщиков Анатолий Николаевич
RU2591827C1
Способ определения содержания дифенгидрамина гидрохлорида (димедрола) в фармацевтической субстанции и препаратах 2021
  • Турусова Елена Васильевна
  • Насакин Олег Евгеньевич
RU2781063C1
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ АСКОРБИНОВОЙ КИСЛОТЫ В РАСТИТЕЛЬНОМ СЫРЬЕ 2015
  • Турусова Елена Васильевна
  • Насакин Олег Евгеньевич
  • Лыщиков Анатолий Николаевич
RU2595878C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОФЕИНА В ЧАЕ И КОФЕ 2009
  • Турусова Елена Васильевна
  • Додин Евгений Иванович
  • Насакин Олег Евгеньевич
  • Лукин Пётр Матвеевич
RU2404428C1
СПОСОБ КУЛОНОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ АСКОРБИНОВОЙ КИСЛОТЫ В РАСТИТЕЛЬНОМ СЫРЬЕ И ПРЕПАРАТАХ ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ 2010
  • Абдуллина Светлана Геннадиевна
  • Агапова Наталья Михайловна
  • Хазиев Рамиль Шамилевич
RU2464558C2
СПОСОБ ОПРЕДЕЛЕНИЯ СВОБОДНОЙ САЛИЦИЛОВОЙ КИСЛОТЫ В АСПИРИНЕ 2010
  • Григорьева Людмила Алексеевна
  • Чернова Надежда Андреевна
  • Ященко Наталия Николаевна
RU2456580C1
СПОСОБ КУЛОНОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ДУБИЛЬНЫХ ВЕЩЕСТВ В РАСТИТЕЛЬНОМ СЫРЬЕ 2010
  • Абдуллина Светлана Геннадиевна
  • Агапова Наталья Михайловна
  • Хазиев Рамиль Шамилевич
  • Зиятдинова Гузель Камилевна
  • Будников Герман Константинович
RU2436084C1
Способ анализа технической натрийкарбоксиметилцеллюлозы 1986
  • Булыгин Борис Михайлович
  • Емелин Евгений Александрович
  • Гренкова Татьяна Васильевна
SU1381388A1

Иллюстрации к изобретению RU 2 552 311 C2

Реферат патента 2015 года СПОСОБ ОПРЕДЕЛЕНИЯ ТИОСУЛЬФАТА НАТРИЯ В РАСТВОРАХ

Изобретение относится к аналитической химии и может быть использовано в системе контроля за содержанием тиосульфата натрия в растворах. Способ определения тиосульфата натрия в растворах характеризуется введением анализируемой пробы в реакционный сосуд, содержащий соответствующее количество фотогенерированного йода, полученного путем продувания 1-2 минуты воздухом и облучения стабилизированным источником света реакционной смеси, состоящей из 0,5 М раствора йодида калия, ацетатного буферного раствора с pH 5,6 и сенсибилизатора эозината натрия, фиксированием изменения тока в ячейке и по достижении его постоянства повторным продуванием реакционной смеси воздухом в течение 2-3 минут и повторным ее облучением стабилизированным источником света до достижения исходного количества йода в сосуде, фиксированием времени генерации йода, затраченного на восполнение его убыли, определением количества тиосульфата натрия по градуировочному графику по изменению силы тока и времени генерации. Изобретение обеспечивает упрощение способа определения тиосульфата натрия в растворах, а также отсутствие дорогостоящего оборудования. 10 табл., 5 ил.

Формула изобретения RU 2 552 311 C2

Способ определения тиосульфата натрия в растворах, характеризующийся введением анализируемой пробы в реакционный сосуд, содержащий соответствующее количество фотогенерированного йода, полученного путем продувания 1-2 минуты воздухом и облучения стабилизированным источником света реакционной смеси, состоящей из 0,5 М раствора йодида калия, ацетатного буферного раствора с pH 5,6 и сенсибилизатора эозината натрия, фиксированием изменения тока в ячейке и по достижении его постоянства повторным продуванием реакционной смеси воздухом в течение 2-3 минут и повторным ее облучением стабилизированным источником света до достижения исходного количества йода в сосуде, фиксированием времени генерации йода, затраченного на восполнение его убыли, определением количества тиосульфата натрия по градуировочному графику по изменению силы тока и времени генерации.

Документы, цитированные в отчете о поиске Патент 2015 года RU2552311C2

Абуллина С.Г
Новые аспекты применения гальваностатической кулонометрии в фармацевтическом анализе
Автореферат диссертации на соискание ученой степени доктора фармацевтических наук
- Москва Всероссийской научно-исследовательской институт лекарственных и ароматических растений (ВИЛАР)РАСХН, 2012
Способ смешанной растительной и животной проклейки бумаги 1922
  • Иванов Н.Д.
SU49A1
Способ определения тиосульфата натрия 1975
  • Щенкова Ирина Михайловна
  • Кисельгоф Геннадий Вениаминович
  • Вешев Сергей Александрович
  • Архангельский Лев Константинович
SU548808A1
СПОСОБ ОПРЕДЕЛЕНИЯ КОФЕИНА В ЧАЕ И КОФЕ 2009
  • Турусова Елена Васильевна
  • Додин Евгений Иванович
  • Насакин Олег Евгеньевич
  • Лукин Пётр Матвеевич
RU2404428C1

RU 2 552 311 C2

Авторы

Турусова Елена Васильевна

Григорьева Людмила Алексеевна

Насакин Олег Евгеньевич

Лыщиков Анатолий Николаевич

Даты

2015-06-10Публикация

2013-10-22Подача