Изобретение относится к металлургии благородных металлов и может быть использовано на предприятиях вторичной металлургии по переработке радиоэлектронного лома и при извлечении золота или серебра из отходов электронной и электрохимической промышленности.
Известен способ извлечения золота и серебра из концентратов, вторичного сырья и других дисперсных материалов (заявка РФ №94005910, опубл. 20.10.1995 г.), который относится к гидрометаллургии благородных металлов, в частности к способам извлечения золота и серебра из концентратов, отходов электронной и ювелирной промышленности. Способ, в котором извлечение золота и серебра включает в себя обработку растворами комплексообразующих солей и пропускание электрического тока с плотностью 0,5-10 А/дм2, в качестве растворов используют растворы, содержащие тиоцианат-ионы, ионы трехвалентного железа, и рН раствора составляет 0,5-4,0. Выделение золота и серебра проводят на катоде, отделенном от анодного пространства фильтрующей мембраной.
Недостатками данного способа являются повышенные потери драгоценных металлов в шламе. Способ требует дополнительной обработки концентратов комплексообразующими солями.
Известен способ извлечения золота и/или серебра из отходов (патент РФ №2194801, опубл. 20.12.2002 г.), включающий электрохимическое растворение золота и серебра в водном растворе при температуре 10-70°С в присутствии комплексообразователя. В качестве комплексообразователя используют этилендиаминтетраацетат натрия. Концентрация этилендиаминтетрауксусной кислоты Na 5-150 г/л. Растворение ведут при рН 7-14. Плотность тока 0,2-10 А/дм2. Использование изобретения позволяет увеличить скорость растворения золота и серебра; уменьшить содержание меди в шламовом осадке до 1,5-3,0%.
Недостатком данного способа является недостаточно высокая скорость растворения.
Известен способ извлечения золота из золотосодержащих полиметаллических материалов (заявка РФ №2000105358/02, опубл. 10.02.2002 г.), включающий получение, регенерацию или рафинирование металлов электролитическим способом. Обрабатываемый материал, предварительно расплавленный и отлитый в форму, используют в качестве анода и проводят электрохимическое растворение и осаждение на катоде металлов-примесей и выделение золота в виде анодного шлама. При этом содержание золота в анодном материале обеспечивают в пределах 5-50 мас.% и процесс электролиза ведут в водном растворе кислоты и/или соли с анионом NO3 или SO4 в концентрации 100-250 г-ион/л при анодной плотности тока 1200-2500 А/м2 и напряжении на ванне 5-12 В.
Недостатком данного способа является проведение электролиза при высокой анодной плотности тока.
Известен способ извлечения золота из отходов (патент РФ №2095478, опубл. 10.11.1997 г.) электрохимического растворения золота в процессах его извлечения из отходов гальванических производств и золотосодержащих руд в присутствии комплексообразователей белковой природы. Сущность: в способе обработку сырья ведут при анодной поляризации золотосодержащего сырья (отходов гальванических производств, золотосодержащих руд и отходов) при потенциалах 1,2-1,4 В (н.в.э.) в присутствии комплексообразователя белковой природы - ферментативного гидролизата белковых веществ из биомассы микроорганизмов, имеющего степень гидролиза не ниже 0,65, при содержании аминного азота в растворе 0,02-0,04 г/л и 0,1 М раствора хлорида натрия (рН 4-6).
Недостатком данного способа является недостаточно высокая скорость растворения.
Известен способ рафинирования меди и никеля из медно-никелевых сплавов, принятый за прототип (Баймаков Ю.В., Журин А.И. Электролиз в гидрометаллургии. - М.: Металлургиздат, 1963 г., стр.213, 214). Способ заключается в электролитическом растворении анодов из медно-никелевого сплава, осаждении меди с получением никелевого раствора и шлама. Аффинаж сплава ведут при плотности тока 100-150 А/м2 и температуре 50-65°С. Плотность тока лимитируется диффузионной кинетикой и зависит от концентрации солей других металлов в растворе. Сплав содержит около 70% меди, 30% никеля и до 0,5% прочих металлов, в частности золота.
Недостатками данного способа являются высокий расход электроэнергии и потери драгоценных металлов, в частности золота, содержащихся в сплаве.
Техническим результатом является уменьшение потерь благородных металлов в шламе, увеличение скорости растворения, снижение расхода электроэнергии.
Технический результат достигается тем, что плавку радиоэлектронного лома проводят в восстановительной атмосфере в присутствии кремния от 2,5 до 5%, а электролитическое растворение анодов, содержащих примеси свинца от 1,3 до 2,4%, осуществляют с использованием никелевого сернокислого электролита.
В таблице 1 представлен состав анода (в %), который использовался при проведении плавки радиоэлектронного лома.
Способ реализуется следующим образом.
Никелевый сернокислый электролит заливают в электролитическую ванну для растворения медно-никелевого анода с содержанием кремния от 2 до 5%. Процесс растворения анода ведут при плотности тока от 250 до 300 А/м2, температуре от 40 до 70°С и напряжении 6 В. Под действием электрического тока и окислительного влияния кремния растворение анода значительно ускоряется и увеличивается содержание благородных металлов в шламе, потенциал анода составляет 430 мВ. Вследствие чего создаются благоприятные условия для электролитического и химического воздействия для растворения медно-никелевого анода.
Данный способ доказывается следующими примерами:
Пример 1
При проведении плавки радиоэлектронного лома в качестве флюса
использовался SiO2, т.е. плавка велась в восстановительной атмосфере, благодаря чему кремний восстановился до элементарного состояния, что было доказано микроанализом, проведенным на микроскопе.
Пример 2
При проведении электролитического растворения данного анода с использованием никелевого электролита и плотностью тока 250-300 А/м2 потенциал анода выполаживается на уровне 430 мВ.
Пример 3
При проведении электролитического растворения анода, не содержащего кремний, в элементарном виде, в тех же условиях, процесс устойчивый, идет при потенциале 730 мВ. С увеличением потенциала анода снижается ток в цепи, что приводит к необходимости повысить напряжение на ванне. Это приводит, с одной стороны, к повышению температуры электролита и его испарению, и с другой - при критическом значении силы тока к выделению на катоде водорода.
Благодаря предлагаемому способу достигаются следующие эффекты:
увеличение содержания благородных металлов в шламе; значительное увеличение скорости растворения анода; возможность ведения процесса в никелевом электролите; отсутствие пассивации процесса растворения Cu-Ni анодов; снижение затрат на электроэнергию как минимум в два раза; достаточно невысокие температуры электролита (70°С), обеспечивающие низкое испарение электролита; низкие плотности тока, позволяющие вести процесс без выделения водорода на катоде.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ОТХОДОВ РАДИОЭЛЕКТРОННОЙ ПРОМЫШЛЕННОСТИ | 2007 |
|
RU2357012C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ ЗОЛОТОСОДЕРЖАЩИХ ПОЛИМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ | 2000 |
|
RU2181780C2 |
СПОСОБ ПЕРЕРАБОТКИ ВТОРИЧНОГО ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ В ЧИСТОЕ ЗОЛОТО (ВАРИАНТЫ) | 2001 |
|
RU2176279C1 |
СПОСОБ ПЕРЕРАБОТКИ ЭЛЕКТРОННОГО ЛОМА НА ОСНОВЕ МЕДИ, СОДЕРЖАЩЕГО БЛАГОРОДНЫЕ МЕТАЛЛЫ | 2011 |
|
RU2486263C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ СЕРЕБРА ИЗ КИСЛОГО РАСТВОРА НИТРАТА СЕРЕБРА МЕТОДОМ ЭЛЕКТРОЭКСТРАКЦИИ | 2017 |
|
RU2650372C1 |
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ИЗВЛЕЧЕНИЯ СЕРЕБРА ИЗ СЕРЕБРОСОДЕРЖАЩИХ ТОКОПРОВОДЯЩИХ ОТХОДОВ | 2011 |
|
RU2467082C1 |
СПОСОБ ВЫДЕЛЕНИЯ СЕРЕБРА ИЗ СЕРЕБРОСОДЕРЖАЩЕГО СПЛАВА | 2013 |
|
RU2540242C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА И СЕРЕБРА ИЗ ПОЛИМЕТАЛЛИЧЕСКОГО СЫРЬЯ | 2004 |
|
RU2258768C1 |
Электрохимический способ получения медного порошка | 1979 |
|
SU876759A1 |
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ЭЛЕКТРОННОЙ И ЭЛЕКТРОТЕХНИЧЕСКОЙ ПРОМЫШЛЕННОСТИ | 2016 |
|
RU2644719C2 |
Изобретение относится к металлургии благородных металлов и может быть использовано на предприятиях вторичной металлургии по переработке радиоэлектронного лома и при извлечении золота или серебра из отходов радиоэлектронной промышленности. Способ включает плавку радиоэлектронных отходов в восстановительной атмосфере в присутствии диоксида кремния с получением медно-никелевого анода, содержащего от 2,5 до 5% кремния. Полученный электрод, содержащий примеси свинца от 1,3 до 2,4%, подвергают электролитическому растворению с использованием никелевого сернокислого электролита с получением шлама с благородными металлами. Техническим результатом является уменьшение потерь благородных металлов в шламе, увеличение скорости растворения за счет снижения пассивации анодов и снижение расхода электроэнергии.1 табл., 3 пр.
Способ извлечения благородных металлов из отходов радиоэлектронной промышленности, включающий плавку радиоэлектронного лома с получением медно-никелевых анодов и их электролитическое анодное растворение с получением благородных металлов в шламе, отличающийся тем, что плавку радиоэлектронного лома ведут в восстановительной атмосфере в присутствии диоксида кремния с получением анодов, содержащих от 2,5 до 5% кремния, при этом электролитическому анодному растворению подвергают полученные аноды с содержанием примеси свинца от 1,3 до 2,4% и с использованием никелевого сернокислого электролита.
СПОСОБ ИЗВЛЕЧЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ ОТХОДОВ РАДИОЭЛЕКТРОННОЙ ПРОМЫШЛЕННОСТИ | 2007 |
|
RU2357012C1 |
СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО РАФИНИРОВАНИЯ МЕДИ И НИКЕЛЯ ИЗ МЕДНО-НИКЕЛЕВЫХ СПЛАВОВ | 2003 |
|
RU2237750C1 |
2001 |
|
RU2194801C | |
RU 94005910 А1, 20.10.1995;;;; | |||
US 4462879 А, 31.07.1984 | |||
WO 8200303 А1, 04.02.1982 | |||
US 4139432 А, 13.02.1979. |
Авторы
Даты
2015-06-10—Публикация
2014-03-27—Подача