СПОСОБ ИЗВЛЕЧЕНИЯ СЕРЕБРА ИЗ КИСЛОГО РАСТВОРА НИТРАТА СЕРЕБРА МЕТОДОМ ЭЛЕКТРОЭКСТРАКЦИИ Российский патент 2018 года по МПК C25C1/20 C25C7/02 C22B11/00 

Описание патента на изобретение RU2650372C1

Изобретение относится к области металлургии благородных металлов, в частности к извлечению серебра из кислых растворов нитрата серебра методом электроэкстракции с использованием нерастворимых термообработанных титановых анодов.

Из RU 2467082 известен способ получения благородных металлов, в частности способ электрохимического извлечения серебра из серебросодержащих токопроводящих отходов, который используется при переработке различных видов полиметаллического сырья (лом радиоэлектронной и вычислительной техники, отходы электронной, электрохимической и ювелирной промышленности, концентраты технологических переделов). Способ включает анодное растворение серебра в водном растворе комплексообразователя в потенциостатическом режиме с анодом из исходного сырья и нерастворимым катодом. В качестве комплексообразователя используют сульфит натрия с концентрацией 12-370 г/л. Анодное растворение ведут при 18-50°C при потенциале анода 0,40÷0,74 В относительно нормального водородного электрода. При этом процесс ведут в закрытом объеме в неагрессивной слабощелочной среде.

Также из RU 2194801 известно извлечение серебра из отходов электронной, электрохимической и ювелирной промышленности. Способ включает электрохимическое растворение золота и серебра в водном растворе при температуре 10-70°C в присутствии комплексообразователя. В качестве комплексообразователя используют этилендиаминтетраацетат натрия. Поставленная задача решается тем, что обработку золото- и серебросодержашего токопроводящего сырья ведут в электролитической ячейке, содержащей анод из исходного токопроводящего сырья и нерастворимый катод, в которую вводят водный раствор этилендиаминтетраацетата натрия концентрации 20-120 г/л при pH 7-14 и где пропускают постоянный ток плотностью 0,2-10 А/дм2 при известной температуре. За 0,3 ч извлечение серебра достигает 99,98%, медь переходит всего лишь в количестве 3%. Однако степень извлечения золота достигает 99,5% за 2,5 ч. Продолжительность процесса по сравнению с известным способом для серебра сокращается в несколько десятков раз, а для золота в 3-5 раз. При этом используют более дешевый и нетоксичный комплексообразователь, утилизация которого не создает проблем, так как известно, что этот реагент применяют для умягчения воды.

Из RU 2267564 известна разработка способа изготовления платинотитановых анодов. Способ включает гальваническое нанесение платинового покрытия на титановую основу из аммиачного электролита на основе соли [Pt(NH3)2(NO2)2]. При этом используют электролит платинирования с концентрацией платины 2-9 г/дм3, а перед нанесением платинового покрытия проводят химическое травление непосредственно в электролите платинирования в течение 5-10 минут, затем изготовленные платинотитановые аноды подвергают анодной обработке в ванне электроэкстракционного извлечения платины при потенциале анода 1,8-2,2 В. Данные платиновые аноды пригодны для извлечения серебра из растворов.

Традиционные технологии аффинажа серебра основаны на электрохимических процессах. Исходные материалы, например сплавы на основе серебра, после переплавки отливают в форме анодов и подвергают анодному растворению в азотнокислых электролитах. На катоде получают серебро товарной чистоты, нерастворившиеся примеси (золото, платиноиды) образуют шлам, растворяемые примеси (неблагородные металлы) переходят в электролит и по мере накопления могут осаждаться на катоде, загрязняя катодное серебро. Загрязненный электролит приходится выводить из ванны и заменять его свежим. Необходимость регенерации электролита является основным недостатком электрохимического метода аффинажа (1. Металлургия благородных металлов: В 2-х кн. Кн. 1 / Ю.А. Котляр, М.А. Меретуков, Л.С. Стрижко. - М.: МИСИС., «Руда и металлы», 2005. г., - 432 с. 2. Масленицкий И.Н., Чугаев Л.Г. Металлургия благородных металлов. - М.: Металлургия, 1987. - 366 с. 3. Меретуков М.А., Орлов A.M. Металлургия благородных металлов. Зарубежный опыт. - М.: Металлургия, 1990. - 416).

Наиболее близким аналогом, принятым за прототип, можно считать решение RU 2100484, описывающее метод, включающий растворение исходного сплава в азотной кислоте в присутствии ионов аммония, отделение шлама, стадийную очистку растворов от платиноидов и неблагородных металлов, электроэкстракцию серебра из очищенного раствора с одновременной регенерацией азотной кислоты и возврат ее на растворение сплава.

Недостатком данного способа можно считать низкую эффективность процесса.

Технический результат заявленного изобретения заключается в создании способа, позволяющего эффективно извлекать серебро, обладающее высоким качеством.

Такой результат достигается тем, что способ извлечения серебра из кислого раствора нитрата серебра методом электроэкстракции характеризуется тем, что в качестве анодов используют титановые пластины, покрытые оксидно-нитридной пленкой, при этом для образования оксидно-нитридной пленки на поверхности титановой пластины последнюю прокаливают в воздушной среде при температуре 450÷500°C, для образования оксидно-нитридной пленки толщиной 30÷50 мкм с защитными свойствами, а процесс электроэкстракции осуществляют при напряжении 2÷3 B, плотности тока 210÷240 А/м2.

Дополнительно для образования оксидно-нитридной пленки на поверхности титановой пластины последнюю прокаливают в воздушной среде в течение 2÷3 часов.

При этом образование оксидно-нитридной пленки на поверхности титановой пластины происходит при прокаливании пластины в воздушной среде при температуре 450÷500°C, что обеспечивает образование оксидно-нитридной пленки оптимальной толщины с максимальными защитными свойствами. Прокалка титановой пластины при температуре ниже 450°C не обеспечивает образование оксидно-нитридной пленки оптимальной толщины и титан подвергается растворению, как и прокалка свыше 500°C, в результате которой оксидно-нитридная пленка теряет свои защитные свойства и титан также подвергается растворению.

Также для образования оксидно-нитридной пленки на поверхности титановой пластины последнюю прокаливают в воздушной среде в течение 2÷3 часов. Предложенное время прокалки является оптимальным для получения оксидно-нитридной пленки с максимальными защитными свойствами. Более длительное время прокалки не повышает защитные свойства титана, но увеличивает время процесса прокалки и суммарный расход электроэнергии.

Известно, что титан при анодной поляризации в азотнокислых растворах растворяется и, следовательно, не пригоден для использования в качестве анодов в процессе электроэкстракции серебра из кислых растворов. Установлено, что при термообработке в среде, содержащей кислород и азот, например, с доступом воздуха, поверхность титана покрывается оксидно-нитридной пленкой, которая в кислых растворах нитрата серебра является проводником электрического тока и в то же время достаточно эффективно защищает титан от воздействия азотной кислоты при анодной поляризации.

Т.о. титановые пластины прокаливают в воздушной среде при температуре 450÷500°C в течение 2÷3 часов, после чего их используют в качестве нерастворимых анодов в процессе электроэкстракции серебра из кислых растворов нитрата серебра, так что процесс растворения титана начинается через 700-2000 часов после начала электроэкстракции.

Пример 1

Аноды из титана нагрели в печи камерного типа до 450°C и выдержали при данной температуре в течение 2,5 часов. Измеренная толщина полученной оксидной пленки при этом составила от 30 до 50 мкм. Полученные аноды установили в электролизер и провели процесс электроэкстракции серебра. Параметры работы электролизера: напряжение 2 В, плотность тока 210 А/м2. Процесс растворения титана начался через 2000 часов после начала электроэкстракции. Восстановление поверхностных свойств титана провели повторной прокалкой при описанных выше условиях.

Пример 2

Аноды из титана нагрели в печи камерного типа до 500°C и выдержали при данной температуре в течение 2,7 часа. Толщина оксидной пленки при этом составила порядка 100 мкм. Полученные аноды установили в электролизер и провели процесс электроэкстракции серебра. Параметры работы электролизера: напряжение 3 В, плотность тока 240 А/м2. Процесс растворения титана начался через 700 часов после начала электроэкстракции, полностью титановые аноды растворились через 1400 часов работы.

Пример 3

Аноды из титана нагрели в печи камерного типа до 440°C и выдержали при данной температуре в течение 2,5 часов. Толщина оксидной пленки при этом составила менее 10 мкм. Полученные аноды установили в электролизер и провели процесс электроэкстракции серебра. Параметры работы электролизера: напряжение 2,5÷3 В, плотность тока 210÷240 А/м2. Процесс растворения титана начался через 48 часов после начала электроэкстракции, полностью титановые аноды растворились через 400 часов работы.

Т.о. очевидно, что прокалка титановой пластины при температуре ниже 450°C не обеспечивает образование оксидно-нитридной пленки оптимальной толщины, и титан подвергается растворению, как и прокалка свыше 500°C, в результате которой оксидно-нитридная пленка теряет свои защитные свойства и титан также подвергается растворению.

Предложенное время прокалки является оптимальным для получения оксидно-нитридной пленки с максимальными защитными свойствами. Более длительное время прокалки не повышает защитные свойства титана, но увеличивает время процесса прокалки и суммарный расход электроэнергии.

Похожие патенты RU2650372C1

название год авторы номер документа
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ОЧИСТКИ ВОДНЫХ РАСТВОРОВ МЕДИ ОТ МАРГАНЦА 2001
  • Воропанова Л.А.
  • Хоменко Л.П.
RU2209839C2
СПОСОБ ПЕРЕРАБОТКИ ВТОРИЧНОГО ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ В ЧИСТОЕ ЗОЛОТО (ВАРИАНТЫ) 2001
  • Дороничева Л.А.
  • Дзегиленок В.Н.
  • Крыщенко К.И.
  • Буланов В.В.
  • Леньшин И.Д.
  • Тертичный А.И.
  • Обрезумов В.П.
  • Нейланд А.Б.
  • Никольский А.А.
  • Крыщенко И.К.
  • Буланов Ю.В.
  • Воронцов А.А.
  • Соснер Е.М.
  • Кутепов А.Н.
RU2176279C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ИЗВЛЕЧЕНИЯ СЕРЕБРА ИЗ СЕРЕБРОСОДЕРЖАЩИХ ТОКОПРОВОДЯЩИХ ОТХОДОВ 2011
  • Кальный Данила Борисович
  • Коковкин Василий Васильевич
  • Миронов Игорь Витальевич
RU2467082C1
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА И СЕРЕБРА ИЗ ПОЛИМЕТАЛЛИЧЕСКОГО СЫРЬЯ 2004
  • Аваева Т.И.
  • Белов С.Ф.
  • Середина Г.Д.
RU2258768C1
СПОСОБ ВЫДЕЛЕНИЯ СЕРЕБРА ИЗ СЕРЕБРОСОДЕРЖАЩЕГО СПЛАВА 2013
  • Шигин Евгений Сергеевич
  • Гаврилов Станислав Анатольевич
  • Кузнецов Денис Валерьевич
  • Котыхов Михаил Игоревич
  • Березин Василий Николаевич
  • Шигин Сергей Валентинович
  • Трещетенкова Ирина Леонидовна
  • Трещетенков Евгений Евгеньевич
RU2540242C1
СПОСОБ ПЕРЕРАБОТКИ СПЛАВА ЛИГАТУРНОГО ЗОЛОТА 2012
  • Сонькин Владимир Семенович
  • Ковалев Сергей Васильевич
  • Сидин Евгений Геннадьевич
  • Гельман Геннадий Ефимович
  • Муралеев Адиль Ринатович
  • Маганов Дмитрий Дмитриевич
RU2516180C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛАТИНОТИТАНОВЫХ АНОДОВ 2004
  • Ашихин Виктор Владимирович
  • Лебедь Андрей Борисович
  • Краюхин Сергей Александрович
  • Воронцов Вадим Валентинович
  • Юнь Антонин Александрович
  • Ковригин Дмитрий Николаевич
  • Чиркова Светлана Салаватовна
  • Скопин Дмитрий Юрьевич
  • Шполтакова Ирина Александровна
RU2267564C2
Способ получения аффинированного серебра из промпродуктов драгметального производства, содержащих серебро в форме хлорида 2021
  • Ласточкина Марина Андреевна
  • Ершов Сергей Дмитриевич
  • Востриков Владимир Александрович
  • Курдояк Светлана Сергеевна
  • Ракитин Владимир Александрович
RU2779554C1
ЭЛЕКТРОХИМИЧЕСКИЙ СПОСОБ ОЧИСТКИ ВОДНЫХ РАСТВОРОВ ЦИНКА ОТ МАРГАНЦА 2005
  • Воропанова Лидия Алексеевна
  • Аванесян Гаянэ Сергеевна
RU2301287C2
СПОСОБ ПЕРЕРАБОТКИ ОТХОДОВ ЯДЕРНОГО ПРОИЗВОДСТВА 2017
  • Бухарин Александр Дмитриевич
  • Веденков Василий Викторович
  • Соловей Александр Игоревич
  • Стефановский Дмитрий Валерьевич
  • Филатов Олег Николаевич
  • Черкасов Александр Сергеевич
  • Шестых Дмитрий Владимирович
RU2646535C1

Реферат патента 2018 года СПОСОБ ИЗВЛЕЧЕНИЯ СЕРЕБРА ИЗ КИСЛОГО РАСТВОРА НИТРАТА СЕРЕБРА МЕТОДОМ ЭЛЕКТРОЭКСТРАКЦИИ

Изобретение относится к области металлургии благородных металлов, в частности к извлечению серебра из кислых растворов нитрата серебра методом электроэкстракции с использованием нерастворимых термообработанных титановых анодов. Перед процессом электроэкстракции проводят подготовку титановых анодов путем прокаливания в воздушной среде при температуре 450÷500°C для образования на поверхности титанового анода оксидно-нитридной пленки толщиной 30÷50 мкм с защитными свойствами. Процесс электроэкстракции осуществляют при напряжении 2÷3 В, плотности тока 210÷240 А/м2. Способ позволяет эффективно извлекать серебро высокого качества. 1 з.п. ф-лы, 3 пр.

Формула изобретения RU 2 650 372 C1

1. Способ извлечения серебра из кислого раствора нитрата серебра электроэкстракцией, отличающийся тем, что электроэкстракцию ведут с использованием в качестве анодов титановых пластин, покрытых оксидно-нитридной пленкой с защитными свойствами толщиной 30÷50 мкм, образованной путем прокаливания титановых пластин в воздушной среде при температуре 450÷500°C, при этом процесс электроэкстракции осуществляют при напряжении 2÷3 В и плотности тока 210÷240 А/м2.

2. Способ по п. 1, отличающийся тем, что титановую пластину прокаливают в воздушной среде в течение 2÷3 часов.

Документы, цитированные в отчете о поиске Патент 2018 года RU2650372C1

СПОСОБ ПОЛУЧЕНИЯ СЕРЕБРА ИЗ ЕГО СПЛАВОВ 1996
  • Лебедь А.Б.
  • Скороходов В.И.
  • Набойченко С.С.
  • Мастюгин С.А.
  • Хусаинов Ф.Г.
RU2100484C1
Котухова Г.П
и др
Способ получения аффинированного серебра
Записки Горного института
Устройство для отыскания металлических предметов 1920
  • Миткевич В.Ф.
SU165A1
СПОСОБ ВЫДЕЛЕНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ РАСТВОРА 2000
  • Карманников В.П.
  • Игумнов М.С.
  • Драенков А.Н.
  • Татаринцев А.Н.
  • Ковалев В.В.
  • Клеандров В.Т.
  • Юрасова О.В.
RU2164554C1
Способ извлечения серебра из отработанных растворов и электролитов 1990
  • Нагирный Виктор Михайлович
  • Говорова Ирина Александровна
  • Приходько Людмила Александровна
SU1786159A1
US 4997532 A, 05.03.1991.

RU 2 650 372 C1

Авторы

Сонькин Владимир Семенович

Муралеев Адиль Ринатович

Сидин Евгений Геннадьевич

Маганов Дмитрий Дмитриевич

Гельман Дмитрий Евгеньевич

Даты

2018-04-11Публикация

2017-07-03Подача