УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ РАЗЛОЖЕНИЯ СМАЗОЧНЫХ МАСЕЛ В КОМПРЕССОРАХ АВИАЦИОННЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ Российский патент 2015 года по МПК G01N1/20 G01N33/26 

Описание патента на изобретение RU2553856C1

Изобретение относится к технике моделирования процессов разложения смазочных масел в газотурбинных двигателях (ГТД) для проведения исследований по токсичности продуктов разложения смазочных масел и для сокращения количества полетных проб воздуха кабин летательных аппаратов (ЛА) при исследовании степени загрязнения воздуха вредными веществами, поступающими вместе с воздухом в систему кондиционирования воздуха (СКВ), и определения состава вредных примесей, опасных концентраций в воздухе газов и паров, повышения чувствительности их определения.

Основной источник загрязнения воздуха кабин летательных аппаратов - унос смазочного масла из передних опор двигателей с его последующим полным или частичным разложением в тракте компрессора газотурбинного двигателя (ГТД) на разных режимах его работы. Сложная смесь, содержащая пары и аэрозоли смазочного масла, пары алифатических углеводородов, акролеина, формальдегида, фенола, крезолов, уксусной кислоты, бензола, трикрезилфосфата, этилового, пропилового, бутилового и изобутилового спиртов, ацетона, толуола, ксилолов, окиси и двуокиси углерода, поступает из системы кондиционирования воздуха в кабину ЛА. Кроме того, воздух кабин ЛА загрязняют выделения из отделочных матераилов кабины и антропотоксины и для выявления источника загрязнения необходимы данные о полном составе продуктов разложения масла в ГТД на конкретном режиме полета, а отбор проб воздуха ГТД в полете сильно затруднен.

Предлагаемое устройство может быть использована при заводских и сертификационных испытаниях ЛА на соответствие требованиям §831 АП-25 (Авиационные правила. Часть 25. Нормы летной годности самолетов транспортной категории. 2008 г.), аналогично АП-29 (вертолеты) и АП-23 (гражданские легкие самолеты) и при проведении токсикологических исследований.

Известены "Способ оценки коррозийных свойств моторных масел" (авторское свидетельство АС № 129872, опубл. 59 г.) и устройство для его обеспечения, содержащее расходный бачок, насос для нагнетания моторного масла, которое разбрызгивается на нагретые стенки бачка и стекает вниз. Масло должно омывать поверхности пластин. Однако данное устройство не обеспечивает точности моделирования состава продуктов разложения масла в авиационных ГТД путем воспроизведения концентрации разложения масла в авиационных ГТД, регулирования времени нахождения масла в горячей зоне, смены режимов работы устройства для имитации конкретных режимов разложения масла в ГТД.

Наиболее близким по технической сущности к предлагаемому устройству является устройство, описанное в патенте на изобретение РФ № 2476852 от 13.02.2012. Известны «Способ оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей, на содержание продуктов разложения смазочных масел» и устройство, содержащее шприц-дозатор, заполняемый смазочным маслом, шток шприца-дозатора с электроприводом, мембрану испарителя, теплоизолятор, термодатчик, термореле, камеру разложения масла с диафрагмой на выходе потока воздуха из камеры, для регулирования объема камеры внутри ее помещены стальные шарики, нагреватель, расположенный на камере. Для создания давления воздуха в камере установлен воздуховод, подключенный через манометр к воздушному компрессору (пат. RU № 2476852, от 13.02.2012 г.).

В шприц-дозатор набирают масло, идентичное применяемому в двигателе. Игла шприца прокалывает мембрану и теплоизолятор испарителя, совмещенного с камерой разложения масла с помещенными внутри для регулирования объема стальными шариками. В камере разложения с помощью нагревателя, термодатчика и термореле создается температура, равная температура заданной ступени отбора компрессора. Давление воздуха в камере, равное давлению в ступени отбора ГТД, создают с помощью компрессора и контролируют по манометру. Расход воздуха регулируют с помощью подбора сечения диафрагмы для имитации времени нахождения масла в горячей зоне двигателя. Время нахождения масла в горячей зоне, рассчитываемого как отношение объема горячей зоны компрессора двигателя, вычисляется из геометрических параметров двигателя, где происходит разложение масла, к объемной скорости воздуха через данную ступень.

К недостаткам такой конструкции можно отнести то, что для ввода масла в обогреваемую камеру используется шприц, с помощью которого трудно добиться воспроизводимых результатов по значению концентраций продуктов разложения масла из-за неравномерной подачи самого масла. Затруднен анализ количества введенного масла в ходе эксперимента. Кроме того, разложение масла начинается уже в игле шприца, что искажает данные по составу продуктов разложения. В описанном устройстве в ходе эксперимента (без разборки конструкции) невозможно изменение основного параметра - время нахождения масла в горячей зоне, т.к. объем камеры разложения здесь фиксирован.

Технический результат, на достижение которого направлено изобретение, заключается в повышении точности моделирования состава продуктов разложения масла в авиационных ГТД путем воспроизведения концентрации разложения масла в авиационных ГТД, регулирования времени нахождения масла в горячей зоне, смены режимов работы устройства для имитации конкретных режимов разложения масла в ГТД. Предложенное устройство после соответствующей метрологической аттестации может быть применено для поверки в целом систем отбора проб воздуха ГТД (СОП).

Для достижения указанного технического результата в устройстве для моделирования процессов разложения смазочных масел в компрессорах авиационных газотурбинных двигателей, содержащем дозатор масла, камеру распыления и разложения смазочных масел, диффузор на выходе потока воздуха из камеры, размещенные на камере нагреватель (трубчатая печь) с термопарой и термореле, воздуховод, подводящий перекачиваемый горячий воздух в камеру разложения смазочных масел, подключенный через манометр к воздушному компрессору, устройство содержит баллон, заполненный азотом особой чистоты, соединенную с ним газопроводом через регулятор, переходник и накидные гайки герметичную мерную емкость с воздушной полостью, с маслом и крышкой для залива масла, с маслопроводом, подключенную через переходник с накидными гайками к мерному капилляру в рубашке охлаждения с циркулирующей водой через термостат, с насосом и радиаторами, прикрепленному к камере разложения с помощью накидной гайки и конуса уплотнения, дополнительную камеру, привинченную к основной камере разложения соосно и герметизированную прокладкой, с установленным внутри нее штоком с маховиком, с нарезанной и не нарезанной частями, где нарезанная часть выполнена с возможностью перемещения во внутренней шайбе с резьбой для регулирования объема камеры разложения и изменения условий моделирования концентрации масла, а не нарезанная часть герметизирована в сальнике с графитовым уплотнением.

Таким образом, во время одного эксперимента без его прекращения можно моделировать любые процессы разложения масла в компрессоре ГТД (изменение температуры и давления воздуха, времени нахождения масла в горячей зоне), что значительно сокращает время эксперимента.

На фиг. 1 представлен чертеж предлагаемого устройства.

Устройство для моделирования процессов разложения смазочных масел в компрессорах авиационных газотурбинных двигателей содержит дозатор масла, камеру распыления и разложения смазочных масел (1), диффузор (2) на выходе потока воздуха из камеры, размещенные на камере нагреватель (3) (трубчатая печь) с термопарой (4) и термореле (5), воздуховод (6), подводящий перекачиваемый горячий воздух в камеру разложения смазочных масел, подключенный через манометр (7) к воздушному компрессору (8), дозатор масла выполнен из герметичной мерной емкости (9), в которую под давлением подают азот через газопровод (10), подключенный через переходник (11) и регулятор (12) к баллону (13), а подачу масла в камеру разложения (1) осуществляют через масловоды (14) с переходниками (11) и через мерный капилляр (15), термостатированный циркуляцией воды комнатной температуры в рубашке охлаждения (16), что обеспечивает равномерное поступление масла в камеру, а мерную емкость (9) до и после эксперимента взвешивают для определения скорости подачи. Масло равномерно распыляется горячим воздухом из обогреваемого воздуховода без разложения в капилляре (15). Для изменения условий моделирования концентрации масла объем камеры регулируют за счет вворачивания внутрь камеры нарезного штока (17) по резьбе, выполненной внутри камеры, а не нарезанная часть штока перемещается внутри дополнительно привинчивающегося нерабочего отсека камеры через графитовое уплотнение со стопорной гайкой.

Кроме того, устройство содержит баллон, заполненный азотом особой чистоты (ОСЧ) (13), регулятор (12) с газопроводом (10), соединенный через переходник (11) и накидные гайки (23) и (24) с воздушной полостью герметичной мерной емкости (9) с маслом с крышкой (19) для залива масла, маслопровод (14) с переходником (11) и накидными гайками (20) и (21), мерный капилляр (15) в рубашке охлаждения (16) с циркулирующей водой через термостат с насосом (18) и радиаторами, который крепится к камере разложения с помощью накидной гайки (22) и конуса уплотнения (25), дополнительную камеру (26), привинченную к основной камере разложения (1) (соосно) и герметизированную прокладкой (27), шток с маховиком (17) с нарезанной и не нарезанной частью, где нарезанная часть перемещается во внутренней шайбе с резьбой (28), а не нарезанная часть герметизируется в сальнике с графитовым уплотнением (29).

Работа устройства.

Устройство работает следующим образом. Сначала задаются моделируемые параметры воздуха в ГТД (температура и давление воздуха, время нахождения масла в данной ступени компрессора ГТД). До начала работы расчетным или экспериментальным путем определяется внутренний объем камеры разложения (1) при полностью ввернутом и вывернутом штоке (17) и в промежуточных значениях (разное количество оборотов штока (17)). В мерную емкость (9) через горловину с крышкой (19) заливается исследуемое масло. Вместе с газопроводом (10) (до регулятора давления (12)) и масловодом (14) без переходников (11) емкость взвешивают. Далее она присоединяется через переходник (11) с накидными гайками (23) и (24) к регулятору давления (12) баллона с азотом (13) и через переходник (11) с накидными гайками (21) и (22) к капилляру (15), с рубашкой охлаждения (16) и радиаторами (30), к которым подсоединен водяной термостат с насосом (18). Скорость истечения масла из емкости (9) зависит от разности давления азота в емкости, задаваемого регулятором давления (12), и давления воздуха по манометру (7) в камере разложения (1), а также от сечения мерного капилляра (15). Давление азота, а при необходимости и сечение капилляра подбирают экспериментально. Устройство полностью собирается. С помощью штока (17) устанавливается необходимый объем камеры. На выход из камеры разложения с накидной гайкой (31) вворачивается диффузор (2) нужного сечения со штуцером для обеспечения потребной скорости потока загрязненного воздуха при выбранном давлении в камере разложения. Устанавливаются необходимые параметры воздуха на компрессоре (8), контролируемые по манометру (7). На трубчатую печь (3) через термореле (5) с выбранной температурой подается напряжение и при выходе на заданный режим по термопаре (4) давление в емкости (9) поднимается с помощью регулятора давления (12) до получения необходимой разности давления на капилляре (15) и обеспечения потребного потока масла. Поток стабилен, т. к капилляр термостатирован, а перепад давления на нем поддерживается постоянным во время всего эксперимента. Расход масла за эксперимент определяется по разности веса емкости с маслом до и после эксперимента (после отсоединения баллона на его место подключается вакуумная линия для сбора остатков масла из масловода и капилляра). Все параметры, кроме скорости расхода масла (менять нежелательно из-за снижения метрологических характеристик), по потребности меняются в широком диапазоне в ходе эксперимента. Они выбираются в зависимости от целей использования полученного в устройстве газового потока, содержащего продукты разложения смазочного масла в условиях, имитирующих условия в компрессоре ГТД и в постоянной концентрации. Давление воздуха в камере, равное давлению в ступени отбора ГТД, создают с помощью компрессора и контролируют по манометру. Расход воздуха регулируют с помощью подбора сечения диафрагмы для имитации времени нахождения масла в горячей зоне двигателя. Время нахождения масла в горячей зоне, рассчитываемого как отношение объема горячей зоны компрессора двигателя, вычисляется из геометрических параметров двигателя, где происходит разложение масла, к объемной скорости воздуха через данную ступень.

Все это позволяет, кроме обычного использования в токсикологических экспериментах и в рамках использования способа оценки чистоты воздуха гермокабин летательных аппаратов, поступающего от компрессоров газотурбинных двигателей на содержание продуктов разложения смазочных масел (патент на изобретение РФ № 2476852 от 13.02.2012), использовать данное устройство при метрологической аттестации систем отбора проб воздуха ГТД.

Похожие патенты RU2553856C1

название год авторы номер документа
СПОСОБ ОЦЕНКИ ЧИСТОТЫ ВОЗДУХА ГЕРМОКАБИН ЛЕТАТЕЛЬНЫХ АППАРАТОВ, ПОСТУПАЮЩЕГО ОТ КОМПРЕССОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ, НА СОДЕРЖАНИЕ ПРОДУКТОВ РАЗЛОЖЕНИЯ СМАЗОЧНЫХ МАСЕЛ 2012
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Парусова Марина Георгиевна
  • Фролкина Людмила Вениаминовна
RU2476852C1
Способ определения концентрации пожаротушащих веществ в воздухе мотогондол газотурбинных двигателей и устройство для его осуществления 2021
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Попов Владимир Викторович
RU2772707C1
Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях 2016
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Фролкина Людмила Вениаминовна
RU2624159C1
Устройство для отбора средней за полёт пробы воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях 2018
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Фролкина Людмила Вениаминовна
RU2681192C1
Устройство для отбора проб воздуха от авиационных газотурбинных двигателей при проведении испытаний на летающих лабораториях и высотных стендах 2023
  • Могильников Валерий Павлович
RU2826370C1
Способ оценки средних за полёт концентраций токсичных примесей в воздухе гермокабин летательных аппаратов и в воздухе, поступающем от компрессоров газотурбинных двигателей, и устройство для его осуществления 2017
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Фролкина Людмила Вениаминовна
RU2662763C1
УСТРОЙСТВО ДЛЯ ПОДГОТОВКИ, ПОДАЧИ И ИЗМЕНЕНИЯ НАПРАВЛЕНИЯ СТРУИ ВОДЯНОЙ ПЫЛИ ПРИ ВЫСОТНЫХ ИСПЫТАНИЯХ ГТД НА ОБЛЕДЕНЕНИЕ 2010
  • Кулаков Вячеслав Васильевич
  • Шершаков Сергей Михайлович
  • Сафронов Александр Валерьянович
  • Говоруха Людмила Васильевна
RU2442123C1
СПОСОБ ОЦЕНКИ ИСПАРЯЕМОСТИ МИНЕРАЛЬНЫХ СМАЗОЧНЫХ МАСЕЛ 1996
  • Федоров М.И.
  • Золотов В.А.
  • Чулков И.П.
  • Чечкенев И.В.
  • Тихонова В.К.
  • Бауман В.Н.
RU2098812C1
ГАЗОТУРБИННАЯ УСТАНОВКА 2007
  • Бондаренко Леонид Маркович
  • Гришанов Олег Алексеевич
  • Игначков Станислав Михайлович
  • Коссов Валерий Семенович
  • Нестеров Эдуард Иванович
  • Федорченко Дмитрий Геннадиевич
RU2353787C1
Способ оценки градиента токсичных примесей в воздухе гермокабин летательных аппаратов и устройство для его осуществления 2019
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Фролкина Людмила Вениаминовна
RU2694371C1

Реферат патента 2015 года УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ РАЗЛОЖЕНИЯ СМАЗОЧНЫХ МАСЕЛ В КОМПРЕССОРАХ АВИАЦИОННЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ

Изобретение относится к технике моделирования процессов разложения смазочных масел в газотурбинных двигателях для проведения исследований по токсичности продуктов разложения смазочных масел и для сокращения количества полетных проб воздуха кабин летательных аппаратов при исследовании степени загрязнения воздуха вредными веществами, поступающими вместе с воздухом в систему кондиционирования воздуха, и определения состава вредных примесей, опасных концентраций в воздухе газов и паров, повышения чувствительности их определения. Устройство для моделирования содержит дозатор масла, камеру распыления и разложения смазочных масел (1). На выходе потока воздуха из камеры расположен диффузор (2). На камере размещен нагреватель (3) с термопарой (4) и термореле (5). Устройство включает воздуховод (6), подводящий перекачиваемый горячий воздух в камеру разложения смазочных масел, подключенный через манометр (7) к воздушному компрессору (8). Устройство содержит баллон (13), заполненный азотом особой чистоты, соединенную с ним газопроводом через регулятор (12), переходник (11) и накидные гайки (23, 24) герметичную мерную емкость с воздушной полостью, с маслом и крышкой для залива масла, с маслопроводом. Мерная емкость (9) подключена через переходник (11) с накидными гайками (20, 21) к мерному капилляру (15) в рубашке охлаждения (16) с циркулирующей водой через термостат с насосом (18) и радиаторами, прикрепленному к камере разложения с помощью накидной гайки (22) и конуса уплотнения (25). Также устройство включает дополнительную камеру (26), привинченную к основной камере разложения (1) соосно и герметизированную прокладкой (27), с установленным внутри нее штоком с маховиком (17), с нарезанной и не нарезанной частями. При этом нарезанная часть выполнена с возможностью перемещения во внутренней шайбе с резьбой (28) для регулирования объема камеры разложения и изменения условий моделирования концентрации масла, а не нарезанная часть герметизирована в сальнике с графитовым уплотнением (29). Технический результат, на достижение которого направлено изобретение, заключается в повышении точности моделирования состава продуктов разложения масла в авиационных газотурбинных двигателях. 1 ил.

Формула изобретения RU 2 553 856 C1

Устройство для моделирования процессов разложения смазочных масел в компрессорах авиационных газотурбинных двигателей, содержащее дозатор масла, камеру распыления и разложения смазочных масел, диффузор на выходе потока воздуха из камеры, размещенные на камере нагреватель с термопарой и термореле, воздуховод, подводящий перекачиваемый горячий воздух в камеру разложения смазочных масел, подключенный через манометр к воздушному компрессору, отличающееся тем, что устройство содержит баллон, заполненный азотом особой чистоты, соединенную с ним газопроводом через регулятор, переходник и накидные гайки герметичную мерную емкость с воздушной полостью, с маслом и крышкой для залива масла, с маслопроводом, подключенную через переходник с накидными гайками к мерному капилляру в рубашке охлаждения с циркулирующей водой через термостат с насосом и радиаторами, прикрепленному к камере разложения с помощью накидной гайки и конуса уплотнения, дополнительную камеру, привинченную к основной камере разложения соосно и герметизированную прокладкой, с установленным внутри нее штоком с маховиком, с нарезанной и не нарезанной частями, где нарезанная часть выполнена с возможностью перемещения во внутренней шайбе с резьбой для регулирования объема камеры разложения и изменения условий моделирования концентрации масла, а не нарезанная часть герметизирована в сальнике с графитовым уплотнением.

Документы, цитированные в отчете о поиске Патент 2015 года RU2553856C1

СПОСОБ ОЦЕНКИ ЧИСТОТЫ ВОЗДУХА ГЕРМОКАБИН ЛЕТАТЕЛЬНЫХ АППАРАТОВ, ПОСТУПАЮЩЕГО ОТ КОМПРЕССОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ, НА СОДЕРЖАНИЕ ПРОДУКТОВ РАЗЛОЖЕНИЯ СМАЗОЧНЫХ МАСЕЛ 2012
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Парусова Марина Георгиевна
  • Фролкина Людмила Вениаминовна
RU2476852C1
Способ оценки коррозионных свойств моторных масел 1959
  • Зарубин А.И.
  • Захаров Г.В.
  • Папок К.К.
SU129872A1
СПОСОБ ИЗМЕРЕНИЯ СТЕПЕНИ ЗАГРЯЗНЕНИЯ МОТОРНОГО МАСЛА ПРОДУКТАМИ ИЗНОСА УЗЛОВ ТРЕНИЯ 2009
  • Чивилихин Владимир Анатольевич
  • Карих Феликс Гансович
  • Арслангараев Руслан Аухатович
RU2419790C2
УСТРОЙСТВО ДЛЯ ОЦЕНКИ КАЧЕСТВА СМАЗОЧНЫХ МАСЕЛ 2011
  • Яновский Леонид Самойлович
  • Горячев Василий Васильевич
  • Ежов Василий Васильевич
  • Степанова Раиса Михайловна
  • Чвыкова Елена Николаевна
  • Шаранина Ксения Вячеславовна
RU2455629C1
СПОСОБ ОЧИСТКИ ОТХОДЯЩИХ ГАЗОВ ОТ ОКИСЛОВ СЕРЫ 1990
  • Кенити Накагава
RU2014877C1
US 3751661 A, 07.08.1973

RU 2 553 856 C1

Авторы

Могильников Валерий Павлович

Ионов Алексей Владимирович

Щелокова Светлана Рашадовна

Фролкина Людмила Вениаминовна

Даты

2015-06-20Публикация

2014-04-28Подача