Способ оценки градиента токсичных примесей в воздухе гермокабин летательных аппаратов и устройство для его осуществления Российский патент 2019 года по МПК G01N1/22 G01N33/00 B64D13/00 

Описание патента на изобретение RU2694371C1

Область техники.

Изобретения относятся к области исследования и анализа материалов в газообразном состоянии и могут быть использованы при оценки в полете и наземных испытаниях градиента токсичных примесей в воздухе гермокабин летательных аппаратов (ЛА) по распределению концентрации токсичных примесей в воздухе гермокабин летательных аппаратов как при заводских, так и при сертификационных испытаниях авиационной техники на соответствие требованиям §25.831 по авиационным правилам АП-25 в части проверки качества подаваемого на дыхание пассажирам и экипажу из системы кондиционирования воздуха, отбираемого от газотурбинных двигателей, и СанПиН 2.5.1.2423-08.

Уровень техники

Основной источник загрязнения воздуха кабин ЛА - унос смазочного масла из передних опор двигателей с его последующим полным или частичным разложением в тракте компрессора ГТД (в зависимости от режима его работы). Сложная смесь, содержащая по данным ЛИИ, ЦИАМ, ГОСНИИГА и НИИАКМ пары и аэрозоли смазочного масла, пары алифатических углеводородов, акролеина, формальдегида, фенола, крезолов, уксусной кислоты, бензола, трикрезилфосфата (если он есть в рецептуре масла, а также в этом случае и диоктилсебацината), этилового, пропилового, бутилового, и изобутилового спиртов, ацетона, толуола, ксилолов, окиси и двуокиси азота, окиси и двуокиси углерода, поступает из системы кондиционирования воздуха (СКВ) в кабину ЛА. Кроме того, сами пассажиры являются источниками антропотоксинов, в основном углекислого газа. Несмотря на сложные технические решения по оптимизации воздушных потоков эти примеси в воздухе кабины могут распределяться достаточно неравномерно. В воздухе кабины могут существовать зоны с пониженной вентиляцией - застойные зоны, где за счет накопления токсичных примесей уровень загрязнения воздуха может быть выше допустимого. На практике для того, чтобы оценить концентрации примесей в воздухе кабин ЛА на разных этапах полетов требуется проведение отбора и анализа большого количества проб воздуха. При этом речь в основном идет об оценке непревышения критических параметров (предельно допустимые концентрации - ПДК), и в итоге общий уровень загрязненности воздуха кабины ЛА оценивается весьма слабо, несмотря на большое количество отобранных полетных проб воздуха. Чтобы объективно оценивать загрязненность воздуха кабин предлагается до начала проверки чистоты воздуха в них выявить застойные зоны с использованием предложенного способа оценки градиента концентраций токсичных примесей.

Наиболее близким по технической сущности к предлагаемым изобретениям является способ, изложенный в магистерской диссертации: J«Experimental investigation of ventilation effectiveness and dispersion of tracer gas in aircraft cabin mockups» («Экспериментальное исследование эффективности вентиляции и рассеивания газа-индикатора в макете кабины самолета»), J.A. Patel, USA, Kansas State University, Manhattan, 2017 г. Основой способа является изучение распределения специально вводимого в воздух кабины самолета газа-индикатора - углекислого газа при работе штатной системы кондиционирования, остаточные количества которого определяют в нескольких точках кабины с помощью газоанализаторов.

Однако способ позволяет определить распределение токсичных примесей во времени, но не в пространстве кабины, так как количество возможных точек контроля из-за использования газоанализаторов невелико. Кроме того, большинство газоанализаторов, используемых в устройстве, имеют существенную погрешность (до 30%), которая еще более увеличивается, если проводить эксперимент в летных условиях, так как газоанализаторы чувствительны к изменению давления.

Известны устройства для отбора и хранения проб воздуха в виде стеклянных неградуированных газовых пипеток с двумя одноходовыми кранами выполненных по ГОСТ 18954-73 «Прибор и пипетки стеклянные для отбора и хранения проб газа»

Аналогичные устройства выполняются в виде канистр, описанных в стандартеАБТМ (2001): «Standard Test Method for Determination of Volatile Organic Chemicals in Atmospheres (Canister Sampling Methodology), West Conshohocken, PA, American Society for Testing and Materials (ASTM Standard D5466-01)». При этом канистра с запорным вентилем используется либо предварительно отвакуумированной, либо отбор производится методом газового обмена (продувка канистры большим количеством воздуха).

Наиболее близким к предлагаемому устройству являются газовые шприцы. Использование таких устройств описано в справочнике по физико-химическим методам исследования объектов окружающей среды под редакцией Г.И. Арановича, изд-во «Судостроение», Ленинград, 1979 г., стр. 166-211. Однако для одномоментного использования таких устройств необходимо большое количество операторов, присутствие которых на борту не всегда возможно и само их присутствие может вводить дополнительные погрешности в эксперимент. Целесообразно заменить анализ концентрации углекислого газа в условиях реального времени на отбор проб воздуха в выбранных точках, количество которых будет существенно больше.

Предлагаемые изобретения направлены на достижение технического результата, заключающегося в повышении достоверности оценки распределения загрязнений воздуха кабин, оценки градиента токсичных примесей в воздухе гермокабин летательных аппаратов (ЛА) по распределению концентрации токсичных примесей в воздухе гермокабин летательных аппаратов за счет одномоментного автоматического отбора проб специально загрязненного углекислым газом воздуха в выбранных сечениях кабины.

Существенные признаки.

Для достижения названного технического результата в предлагаемом способе оценки градиента токсичных примесей в воздухе гермокабин летательных аппаратов, предусматривающий одномоментный впрыск в систему кондиционирования углекислого газа в концентрации ниже предельно допустимой 0,3-0,5 об. % в течение одной минуты с последующей оценкой его концентрации в нескольких точках кабины летательного аппарата, после впрыска углекислого газа производят одномоментный отбор проб воздуха кабины по выбранному сечению сетки, содержащей пронумерованные пробоотборные узлы, каждые состоящие из двух шприцов-пробоотборников с обратным клапаном и шприца-пневмопривода, размещенного по выбранному сечению сетки, причем для повышения достоверности его проводят в каждой точке сетки параллельно в два пронумерованных шприца-пробоотборника. Оператор приводит их в действие дистанционно с помощью шприца, используемого в качестве пневмопривода. При этом для оценки распределения углекислого газа в каждом сечении могут располагаться несколько пробоотборных сеток с замедлением срабатывания при подаче воздуха в пневмоприводы от баллона с редуктором не только по выбранному сечению, но и во времени - через одну, 5 и 10 минут. Затем сетки демонтируют, и воздух из шприцов анализируют в лаборатории газохроматографически на содержание углекислого газа, при этом для уменьшения потерь пробы открытие обратного клапана анализируемого шприца происходит в момент подсоединения шприца-пробоотборника к крану-дозатору хроматографа, затем оценивают распределение воздушных потоков внутри кабины по градиенту концентраций углекислого газа и выявляют застойные зоны кабины, где эти концентрации максимальны (контроль концентрации)

Для достижения названного технического результата в предлагаемом устройстве для отбора проб воздуха кабины, включающем медицинские одноразовые шприцы, шприцы выполнены объединенными в рабочие газоотборные узлы по три шприца в одной плоскости на специальной планке-держателе и скреплены вместе концевиками штоков. Два боковых шприца с обратными клапанами выполнены в виде пробоотборников, а центральный шприц выполнен в виде шприца-пневмопривода с пружиной для возвратного движения поршня, вход которого подсоединен к выходу воздуховода пневмосистемы, состоящей из баллона со сжатым воздухом, вентиля и редуктора. При этом внутри кабины самолета пробоотборные узлы по три шприца в одной плоскости крепятся на сетке, а в выбранном сечении кабины одномоментно может находиться несколько таких сеток, так как их толщина невелика и равна толщине медицинского шприца на 5-10 мл. Срабатывание такой сетки (пробоотбор) происходит одновременно для всех ее узлов при подаче сжатого воздуха от баллона по параллельным трубопроводам. Воздух из шприцов анализируется в лаборатории газохроматографически посредством крана-дозатора с газохроматографом, что позволяет при последующем газохроматографическом анализе отобранных проб точно определить градиент концентрации углекислого газа не только по выбранному сечению, но и во времени, для этого в входной патрубок пробоотборника в момент подсоединения шприца с патрубком крана-дозатора хроматографа вводят капилляр. Капилляр вмонтирован в патрубок крана-дозатора для отжатия обратного клапана и перемещения пробы из шпица-пробоотборника в кран-дозатор.

Предлагаемые изобретения иллюстрируются чертежами, на которых изображены: на фиг. 1 показан рабочий газоотборный узел устройства для отбора проб воздуха в кабинах ЛА, а на фиг. 2 - приспособление для ввода отобранных проб в кран-дозатор хроматографа без потерь и изменения состава пробы.

Предлагаемый способ осуществляют в следующей последовательности. Внутри кабины самолета монтируются сетки, в узлах которых находятся шприцы-пробоотборники с обратным клапаном и пневмопроводом. Трубки пневмопривода подводятся к баллону, открытие и подача давления через редуктор от которого в дальнейшем производится оператором для разных сеток пробоотборников в заданной последовательности. После выхода системы кондиционирования (СКВ) на заданный режим во входной трубопровод СКВ под давлением в течение минуты впрыскивается углекислый газ с расходом, контролируемым по манометру, в количестве, чтобы итоговый воздух содержал его на уровне 0,3-0,5 об. %. Отборы проб воздуха с помощью предварительно подготовленных сеток с пробоотборниками производятся оператором подачей воздуха в пневмоприводы от баллона с редуктором через 1, 5 и 10 минут после начала впрыска углекислого газа. После отключения баллона отобранный воздух запирается в шприцах обратным клапаном, а пружина в шприце-пневмоприводе обеспечивает избыточное давление в отобранных пробах, препятствуя разбавлению пробы при изменении давления в кабине. Все временные характеристики оговариваются в специальной программе, в зависимости от целей проводимых исследований. Интервалы между отборами и их количество может быть увеличено. В одном сечении возможно до 10 сеток с разным временем срабатывания. После эксперимента сетки демонтируются, и воздух из шприцов анализируется в лаборатории газохроматографически на содержание углекислого газа, при этом для уменьшения потерь пробы открытие обратного клапана анализируемого шприца происходит в момент отбора пробы, что проиллюстрировано на фиг. 2.

Предлагаемое устройство для отбора проб состоит из скрепленных по три в одной плоскости одноразовых медицинских шприца, объединенных в рабочие газоотборные узлы по три в одной плоскости (фиг. 1), при этом крайние шприцы-пробоотборники содержат цилиндрический корпус 1, с поршнем 2, штоком 3 и концевиком 4, входным патрубком 5 и обратным клапаном 6. В центре находится шприц-пневмопривод. Он отличается от пробоотборника отсутствием обратного клапана 6. Внутри корпуса шприца-пневмопривода между поршнем 2 и шпилькой-ограничителем 7 расположена пружина 8. На фиг. 1 изображен рабочий узел пробоотборной сетки в сборе. В центре находится шприц-пневмопривод, а по краям - шприцы-пробоотборники. Концевики поршней шприцов в одном узле закреплены на жесткой рейке -планке-держателе 9 с помощью винтов 10, а сами корпуса шприцов жестко скреплены хомутом 11. Входы шприцов-пневмоприводов подсоединены к выходам воздуховода 12 пневмосистемы, сосотоящей из баллона с сжатым воздухом с вентилем 14 и редуктором 15. Каждая сетка соединена со своим баллоном.

На фиг. 2 изображен ввод отобранной пробы из шприца-пробоотборника в входной патрубок 16 крана-дозатора хроматографа для последующего анализа. В патрубок 16 вмонтирован капилляр 17, выходящий за несколько миллиметров от среза патрубка, и отжимает обратный клапан в момент подсоединения шприца- пробоотборника с патрубком для количественного перемещения пробы воздуха в кран-дозатор хроматографа.

Устройство работает следующим образом.

До начала полета в выбранном одном или нескольких сечениях кабины размещают сетки с закрепленными в одной плоскости пробоотборниками. Через 1, 5 и 10 минут оператор открывает вентиль 14 баллона 13 выбранной сетки пробоотборников. Воздух с заранее отрегулированным редуктором 15 давлением через выходы пневмосистемы попадает на входные патрубки шприцов-пневмоприводов, заставляя сжиматься пружины 8, перемещая поршни шприцов в крайнее положение, зависящее от давления воздуха и сопротивления пружины. Достаточен отбор половины емкости шприца. После отбора вентиль баллона закрывается, и давление в системе сбрасывается отсоединением воздуховода 12 от редуктора 15. Пружины 8 начинают возвратные движения поршней 2 в шприцах 1 патрубком крана-дозатора устройства, которые останавливаются после определенного сжатия воздуха в шприцах-пробоотборниках в их подпоршневым пространстве за счет отсекания расхода воздуха в них обратными клапанами 6 (лепесток мягкой резины, приклеенный с одного края к внутренней торцевой поверхности шприца-пробоотборника). Отобранные таким образом пробы воздуха находятся под избыточным давлением, что позволяет сохранить их с неизменным составом до проведения анализа. Пронумерованные пробоотборные узлы, состоящие из 3 шприцов каждый, демонтируют из сеток и доставляют в лабораторию. В лаборатории эти узлы разбирают, и поочередно входные патрубки 5 шприцов-пробоотборников подключают к входному патрубку 16 крана-дозатора хроматографа, внутри которого вмонтирован выходящий за несколько миллиметров от среза патрубка капилляр, нажатием конца которого на клапан 6 тот открывается, и проба воздуха под нажатие концевика шприца переходит в кран ^дозатор хроматоргафа, который и производит его анализ по стандартной методике на содержание углекислого газа.

Полученные результаты оформляют в виде таблиц, по которым можно оценить распределение воздушных потоков внутри кабины по градиенту концентраций углекислого газа и выявить застойные зоны кабины, где эти концентрации максимальны. В дальнейшем предлагается при проведении испытаний по оценке чистоты воздуха кабин ЛА основные пробы воздуха отбирать именно в этих точках, что позволяет увеличить точность оценки качества воздуха кабин ЛА и сократить время испытаний за счет уменьшения общего количества проб воздуха.

Похожие патенты RU2694371C1

название год авторы номер документа
Способ оценки средних за полёт концентраций токсичных примесей в воздухе гермокабин летательных аппаратов и в воздухе, поступающем от компрессоров газотурбинных двигателей, и устройство для его осуществления 2017
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Фролкина Людмила Вениаминовна
RU2662763C1
СПОСОБ ОЦЕНКИ ЧИСТОТЫ ВОЗДУХА ГЕРМОКАБИН ЛЕТАТЕЛЬНЫХ АППАРАТОВ, ПОСТУПАЮЩЕГО ОТ КОМПРЕССОРОВ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ, НА СОДЕРЖАНИЕ ПРОДУКТОВ РАЗЛОЖЕНИЯ СМАЗОЧНЫХ МАСЕЛ 2012
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Парусова Марина Георгиевна
  • Фролкина Людмила Вениаминовна
RU2476852C1
УСТРОЙСТВО ДЛЯ МОДЕЛИРОВАНИЯ ПРОЦЕССОВ РАЗЛОЖЕНИЯ СМАЗОЧНЫХ МАСЕЛ В КОМПРЕССОРАХ АВИАЦИОННЫХ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ 2014
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Щелокова Светлана Рашадовна
  • Фролкина Людмила Вениаминовна
RU2553856C1
Устройство автоматического отбора проб воздуха для последующего анализа на содержание слабоадсорбирующихся газов в кабинах летательных аппаратов и от авиационных газотурбинных двигателей 2019
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Фролкина Людмила Вениаминовна
RU2717458C1
Способ количественного анализа многокомпонентной газовой смеси в технологическом потоке 2018
  • Садыков Раис Асхатович
  • Белый Владимир Александрович
RU2679912C1
Способ ввода пробы сжиженных углеводородных газов в хроматограф 2020
  • Анолова Елена Леонидовна
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Дмитриев Сергей Антонович
  • Иванов Евгений Владимирович
  • Мазурова Кристина Михайловна
  • Миронов Анатолий Александрович
  • Пахомов Андрей Львович
  • Прохоров Вячеслав Юрьевич
  • Ставицкая Анна Вячеславовна
  • Чудин Егор Александрович
RU2758415C1
ПРОБООТБОРНЫЕ УСТРОЙСТВА НЕПРЕРЫВНОГО И ЦИКЛИЧЕСКОГО ТИПА И СПОСОБ ОБНАРУЖЕНИЯ КОМПОНЕНТОВ СМЕСИ С ИСПОЛЬЗОВАНИЕМ ПРОБООТБОРНЫХ УСТРОЙСТВ 2020
  • Кирьяков Владимир Викторович
  • Коренев Владимир Васильевич
  • Жданеев Олег Валерьевич
RU2745752C1
СИСТЕМА И СПОСОБ ДЛЯ ИЗМЕРЕНИЯ И КОЛИЧЕСТВЕННОГО АНАЛИЗА КИСЛОРОДА И ПРИМЕСЕЙ, СОДЕРЖАЩИХСЯ В КИСЛОРОДЕ МЕДИЦИНСКОМ ГАЗООБРАЗНОМ 2022
  • Галеева Екатерина Владимировна
  • Арысланов Ильшат Ринатович
  • Фалалеева Татьяна Сергеевна
  • Платонов Владимир Игоревич
RU2797786C1
УСТРОЙСТВО ДЛЯ ОТБОРА ПРОБЫ ВОЗДУХА В КАБИНЕ ЛЕТАТЕЛЬНОГО АППАРАТА 2014
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Щелокова Светлана Рашадовна
  • Фролкина Людмила Вениаминовна
RU2553296C1
Устройство для отбора проб воздуха в мотогондолах авиационных газотурбинных двигателей 2016
  • Могильников Валерий Павлович
  • Ионов Алексей Владимирович
  • Фролкина Людмила Вениаминовна
  • Енчилик Елена Анатольевна
  • Ионова Наталья Юрьевна
RU2625234C1

Иллюстрации к изобретению RU 2 694 371 C1

Реферат патента 2019 года Способ оценки градиента токсичных примесей в воздухе гермокабин летательных аппаратов и устройство для его осуществления

Группа изобретений относится к экологии и аналитической химии и может быть использована для оценки градиента токсических примесей в воздухе гермокабин летательных аппаратов. Для этого производится одномоментный впрыск в систему кондиционирования углекислого газа в концентрации ниже предельно допустимой, 0,3-0,5 об.%, в течение одной минуты с последующей оценкой его концентрации в нескольких точках кабины летательного аппарата. После впрыска углекислого газа производят одномоментный отбор проб воздуха кабины по выбранному сечению сетки, содержащей пронумерованные пробоотборные узлы, каждые состоящие из двух шприцов-пробоотборников с обратным клапаном и шприца-пневмопривода, размещенного по выбранному сечению сетки. Для уменьшения потерь пробы открытие обратного клапана анализируемого шприца происходит в момент подсоединения шприца-пробоотборника к крану-дозатору хроматографа. Затем оценивают распределение воздушных потоков внутри кабины по градиенту концентраций углекислого газа и выявляют застойные зоны кабины, где эти концентрации максимальны. Также предложено устройство для отбора проб воздуха, включающее медицинские одноразовые шприцы, выполненные объединенными в рабочие пробоотборные узлы по три и установленными в одной плоскости на специальной планке-держателе и скрепленными вместе концевиками штоков. Группа изобретений позволяет оценить градиент токсических примесей в воздухе гермокабин летательных аппаратов за счет одномоментного автоматического отбора проб специально загрязненного углекислым газом воздуха в выбранных сечениях кабины. 2 н.п. ф-лы, 2 ил.

Формула изобретения RU 2 694 371 C1

1 Способ оценки градиента токсичных примесей в воздухе гермокабин летательных аппаратов, содержащий одномоментный впрыск в систему кондиционирования углекислого газа в концентрации ниже предельно допустимой, 0,3-0,5 об.%, в течение одной минуты с последующей оценкой его концентрации в нескольких точках кабины летательного аппарата, отличающийся тем, что после впрыска углекислого газа производят одномоментный отбор проб воздуха кабины по выбранному сечению сетки, содержащей пронумерованные пробоотборные узлы, каждые состоящие из двух шприцов-пробоотборников с обратным клапаном и шприца-пневмопривода, размещенного по выбранному сечению сетки, при этом для оценки распределения углекислого газа в каждом сечение могут располагаться несколько пробоотборных сеток с замедлением срабатывания при подаче воздуха в пневмоприводы от баллона с редуктором не только по выбранному сечению, но и во времени - через одну, 5 и 10 минут, оператор приводит их в действие дистанционно с помощью шприца, используемого в качестве пневмопривода, далее сетки демонтируют, и воздух из шприцов анализируется в лаборатории газохроматографически на содержание углекислого газа, при этом для уменьшения потерь пробы открытие обратного клапана анализируемого шприца происходит в момент подсоединения шприца-пробоотборника к крану-дозатору хроматографа, затем оценивают распределение воздушных потоков внутри кабины по градиенту концентраций углекислого газа и выявляют застойные зоны кабины, где эти концентрации максимальны.

2 Устройство для отбора проб воздуха, включающее медицинские одноразовые шприцы, отличающееся тем, что шприцы выполнены объединенными в рабочие пробоотборные узлы по три, установлены в одной плоскости на специальной планке-держателе и скреплены вместе концевиками штоков, где два боковых шприца с обратными клапанами выполнены в виде пробоотборников, а центральный шприц выполнен в виде шприца-пневмопривода с пружиной для возвратного движения поршня, вход пневмопривода подсоединен к выходу воздуховода пневмосистемы, состоящей из баллона со сжатым воздухом, вентиля и редуктора, при этом узлы крепятся в одной плоскости в пробоотборной сетке, монтируемой внутри кабины самолета, а в выбранном сечении кабины одномоментно может находиться несколько таких сеток, так как их толщина невелика и равна толщине медицинского шприца на 5-10 мл, входы поршней пневмоприводов нескольких сеток в выбранном сечении кабины соединены с выходами параллельных трубопроводов от баллона сжатого воздуха, срабатывание такой сетки (пробоотбор) происходит одновременно для всех ее узлов при подаче сжатого воздуха от баллона по параллельным трубопроводам, воздух из шприцов анализируется в лаборатории газохроматографически посредством газохроматографа с краном-дозатором, что позволяет при последующем газохроматографическом анализе отобранных проб определить градиент концентрации углекислого газа не только по выбранному сечению, но и во времени.

3 Устройство для отбора проб воздуха по п. 2, отличающееся тем, что для отжатия обратного клапана и перемещения отобранной пробы из шприца-пробоотборника во вход патрубка крана-дозатора газохроматографа вмонтирован капилляр, выходящий за несколько миллиметров от среза патрубка.

Документы, цитированные в отчете о поиске Патент 2019 года RU2694371C1

PATEL J
A
Experimental investigation of ventilation effectiveness and dispersion of tracer gas in aircraft cabin mockups, дис
- Kansas State University, 2017
СПОСОБ ОТБОРА ПРОБ ВОЗДУХА С БОРТА САМОЛЕТА ДЛЯ ОПРЕДЕЛЕНИЯ АЭРОЗОЛЬНЫХ И/ИЛИ ГАЗООБРАЗНЫХ ПРИМЕСЕЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Толмачев Геннадий Николаевич
  • Белан Борис Денисович
RU2627414C2
В.Е
ЗУЕВА СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (RU)), 08.08.2017
JP 8506901 W (RUPPRECHT & PATASHNICK CO INC), 23.07.1996
МОГИЛЬНИКОВ В
П
и др
Методики лётных испытаний чистоты воздуха, отбираемого от авиационных газотурбинных двигателей на нужды систем кондиционирования воздушных судов //Авиационно-космическая техника и технология, 2013, N
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов 1921
  • Ланговой С.П.
  • Рейзнек А.Р.
SU7A1
Приспособление для получения кинематографических стерео снимков 1919
  • Кауфман А.К.
SU67A1
GUAN J
et al
Measurements of volatile organic compounds in aircraft cabins
Счетный сектор 1919
  • Ривош О.А.
SU107A1
Т
Термосно-паровая кухня 1921
  • Чаплин В.М.
SU72A1
Способ приготовления кирпичей для футеровки печей, служащих для получения сернистого натрия из серно-натриевой соли 1921
  • Настюков А.М.
SU154A1

RU 2 694 371 C1

Авторы

Могильников Валерий Павлович

Ионов Алексей Владимирович

Фролкина Людмила Вениаминовна

Даты

2019-07-12Публикация

2019-04-05Подача