СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ НЕЭЛЕКТРИЧЕСКОЙ ВЕЛИЧИНЫ Российский патент 2015 года по МПК G01D3/28 

Описание патента на изобретение RU2554624C1

СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ НЕЭЛЕКТРИЧЕСКОЙ ВЕЛИЧИНЫ

Изобретение относится к области прецизионного приборостроения и может быть использовано при разработке и производстве измерительных преобразователей неэлектрических величин типа датчиков угловых скоростей, датчиков линейных, угловых ускорений, феррозондов, электромагнитных, электростатических подвесов и т.д.

Известен способ измерения физических неэлектрических величин [Г.П. Нуберт, // Измерительные преобразователи неэлектрических величин //, Л.: Энергия, 1970, с. 6] согласно которому производят преобразование физической неэлектрической величины в электрический сигнал, пропорциональный измеряемой физической величине, измеряют преобразованный сигнал. Затем рассчитывают по известным соотношениям между входной физической неэлектрической величиной и выходным сигналом значение входной физической неэлектрической величины.

В качестве примера может быть приведен способ измерения угла разворота объекта (физическая неэлектрическая величина) по значению выходного сигнала датчика угла.

Недостатком способа является малая точность. Указанный недостаток обусловлен тем, что соотношение в датчике между входным и выходным параметрами, зависит от методики калибровки, от условий окружающей среды, качества материалов датчика.

Известен также способ измерения физических неэлектрических величин [Г.П. Нуберт // Измерительные преобразователи неэлектрических величин // Л.: Энергия, 1970, с. 7], который принимается за прототип. Согласно способу, измеряемую физическую величину преобразуют в переменный электрический сигнал, амплитуда которого пропорциональна физической величине, после чего осуществляют выпрямление переменного сигнала с помощью детектора, состоящего, например, из двух диодов. Для уменьшения размеров детектора диоды устанавливают в корпусе микросборки из «n» диодов. Полученный постоянный сигнал усиливают и преобразуют в физическую величину, компенсирующую (уравновешивающую) измеряемую физическую величину, при этом величина постоянного сигнала является мерой измеряемой физической величины.

Способ может быть пояснен на примере способа измерения углового ускорения [Г.П. Нуберт // Измерительные преобразователи неэлектрических величин // Л.: Энергия, 1970, с. 346-348]. При развороте основания с датчиком на чувствительный элемент датчика (крыльчатку) действует момент, который разворачивает крыльчатку вокруг оси подвеса, угол разворота с помощью датчика угла преобразуется в переменный сигнал, амплитуда которого пропорциональна действующему ускорению. Затем осуществляют выпрямление сигнала с помощью детектора выполненного на диодах. Выпрямленный сигнал усиливают и подают на датчик момента. Датчик момента преобразует электрический сигнал в момент, который прикладывается к крыльчатке и уравновешивает (компенсирует) момент от действующего ускорения. При равенстве моментов осуществляют измерение постоянного сигнала в цепи датчика момента, пропорционального действующему ускорению.

Недостатком способа является малая точность. Указанный недостаток обусловлен наличием в выходном сигнале составляющей, обусловленной изменением температуры окружающей среды. Наиболее чувствительным к изменениям температуры элементом в схеме измерения является детектор. При изменении температуры происходит изменение параметров его диодов [М.И. Ингберман и др. // Термостатирование в технике связи // М.: Связь, с. 101-103]. Решение проблемы возможно за счет за счет размещения всего устройства в термостабилизированном объеме, однако это решение неприемлемо по причине ограниченного объема, в котором оно должно размещаться.

Задачей настоящего изобретения является совершенствование способа измерения физической неэлектрической величины.

Достигаемый технический результат - повышение точности измерения физической неэлектрической величины.

Поставленная задача решается тем, что в известном способе измерения физической неэлектрической величины, согласно которому преобразуют измеряемую физическую величину в переменный электрический сигнал, амплитуда которого пропорциональна физической величине, после чего осуществляют выпрямление сигнала с помощью детектора, выполненного на двух диодах, расположенных в корпусе микросборки из «n» диодов, полученный постоянный сигнал усиливают и преобразуют в физическую величину, компенсирующую измеряемую физическую величину, при этом величина постоянного сигнала является мерой измеряемой физической величины, третий диод микросборки используют в качестве датчика температуры, сигналом которого управляют током, протекающим через остальные последовательно соединенные «n-3» диода микросборки, обеспечивая при этом термостабилизацию внутри корпуса микросборки.

Способ может быть пояснен на примере приведенного выше способа измерения углового ускорения объекта.

При действии углового ускорения (измеряемая физическая неэлектрическая величина) на чувствительный элемент датчика (крыльчатку) создается вращающий момент. Под действием момента крыльчатка разворачивается вокруг оси. Угол разворота с помощью датчика угла преобразуют в переменный электрический сигнал. Затем осуществляют выпрямление сигнала с помощью детектора, выполненного на 2 диодах, размещенных в корпусе микросборки из «n» диодов. Два диода позволяют организовать двухполупериодное выпрямление сигнала, более точное, чем на одном диоде (однополупериодное). Размещение диодов в едином корпусе микросборки, например диодной матрице 2ДС 627А, содержащей 8 диодов [// Справочник Полупроводниковые приборы. Диоды выпрямительные, стабилитроны, тиристоры // под редакцией А.В. Голомедова, М.: Радио и связь, 1988] экономит отведенное для устройства пространство.

При этом с целью исключения влияния изменений температуры окружающей среды осуществляют термостабилизацию диодов детектора. Для этого корпус микросборки, в котором размещены диоды детектора, используют как корпус термостабилизированного объема (корпус термостата), третий диод микросборки используют, как датчик температуры. Сигналом которого управляют током, протекающим через цепочку остальных последовательно соединенных «n-3» диодов микросборки, выполняющих роль нагревателя.

Выпрямленный детектором сигнал усиливают и подают на датчик момента. Датчик момента преобразует электрический сигнал в момент, который прикладывают к крыльчатке и уравновешивают момент от действующего ускорения. При равенствемоментов осуществляют измерение сигнала в цепи датчика момента, пропорционального действующему ускорению.

При этом точность измерения ускорения (физической неэлектрической величины) повышается за счет исключения из результатов измерения составляющей обусловленной изменением температуры окружающей среды. На фиг. 1, в качестве примера, приведены полученные авторами экспериментальные зависимости выходного сигнала U детектора от изменения температуры Т окружающей среды: 1 - при реализации способа взятого за прототип, 2 - при реализации предлагаемого способа.

Авторы приводят пример практически реализованной ими схемы температурной стабилизации диодной микросборки феррозондового магнитометра. Схема приведена на фиг. 2.

На фиг. 2 приняты следующие обозначения:

DA1, R1, R2, Я3 - диод и резисторы мостовой схемы;

DA2-DA6 - диоды, образующие цепь нагревателя;

МК - микросхема;

Т - транзистор;

+Uп,-Uп - клеммы для подключения питания схемы;

R4, Cl, С2, С3 - корректирующие элементы микросхемы;

R5 - ограничительное сопротивление в цепи нагревателя.

Работа схемы происходит следующим образом. При изменении (например, увеличении) температуры корпуса микросборки изменяется (увеличивается) температура диода DA1, соответственно изменяется его сопротивление, происходит разбалансировка мостовой схемы DA1, R1, R2, R3, настроенной на заданную (рабочую) температуру. На основе сигнала разбалансировки моста с помощью микросхемы МК формируется сигнал управления транзистором Т, регулирующим (в данном случае, уменьшающим) ток, протекающий через диоды DA2-DA6. Использование данного решения позволило по сравнению с другими известными решениями уменьшить габариты и повысить точность феррозондового магнитометра. В настоящее время на предприятии разрабатывается документация для внедрения данного устройства в производство.

На предприятии предлагаемый способ используется также при разработках измерительных преобразователей неэлектрических величин типа датчиков угловых скоростей, датчиков перемещений в электростатических подвесах гироскопов.

Похожие патенты RU2554624C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МГНОВЕННОЙ СКОРОСТИ ВРАЩЕНИЯ 2002
  • Попов А.П.
  • Горшенков А.А.
RU2227304C2
СПОСОБ ДИАГНОСТИКИ МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Добротворский Александр Николаевич
  • Аносов Виктор Сергеевич
  • Бродский Павел Григорьевич
  • Воронин Василий Алексеевич
  • Димитров Владимир Иванович
  • Леньков Валерий Павлович
  • Руденко Евгений Иванович
  • Тарасов Сергей Павлович
  • Чернявец Владимир Васильевич
  • Яценко Сергей Владимирович
RU2445594C1
УСТРОЙСТВО АНАЛОГОВОГО ДАТЧИКА УГЛА ФАЗОВОГО СДВИГА МЕЖДУ НАПРЯЖЕНИЕМ И ТОКОМ 2011
  • Осипов Вячеслав Семенович
  • Котенев Александр Викторович
  • Шайдуров Игорь Аркадьевич
RU2492572C2
СПОСОБ МЕХАНИЧЕСКОЙ ОБРАБОТКИ НЕЖЕСТКИХ ОСЕСИММЕТРИЧНЫХ ДЕТАЛЕЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 1996
  • Абакумов А.М.
  • Тараненко В.А.
  • Тараненко Г.В.
RU2130360C1
ДАТЧИК ДЛЯ ИЗМЕРЕНИЯ ПЕРЕМЕННОГО ТОКА В ПРОВОДНИКЕ И ИНДИКАТОРНАЯ СИСТЕМА, СОДЕРЖАЩАЯ ТАКОЙ ДАТЧИК 2007
  • Тиим Серен
RU2444019C2
СПОСОБ УПРАВЛЕНИЯ ЧУВСТВИТЕЛЬНЫМ ЭЛЕМЕНТОМ ДЛЯ ИЗМЕРЕНИЯ МЕХАНИЧЕСКИХ ВЕЛИЧИН 2009
  • Мумин Олег Леонидович
  • Сумароков Виктор Владимирович
RU2393486C1
Устройство для измерения знакопеременных перепадов давлений и перегрузок 1973
  • Мельников Олег Игоревич
SU549701A1
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ЖИДКОСТИ В ДЕЙСТВУЮЩИХ НЕФТЕГАЗОВЫХ СКВАЖИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Асманов Р.Н.
  • Даниленко В.Н.
  • Зараменских Н.М.
  • Шокуров В.Ф.
RU2260692C2
ДАТЧИК УГЛОВ НАКЛОНА ОБЪЕКТА 2007
  • Бахарев Олег Даниилович
RU2330241C1
СТЕНД ДЛЯ КОНТРОЛЯ ИЗМЕРИТЕЛЯ УГЛОВЫХ СКОРОСТЕЙ 1995
  • Калихман Д.М.
  • Калихман Л.Я.
  • Улыбин В.И.
RU2115129C1

Реферат патента 2015 года СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ НЕЭЛЕКТРИЧЕСКОЙ ВЕЛИЧИНЫ

Изобретение относится к области приборостроения и может быть использовано при разработке и производстве измерительных преобразователей неэлектрических величин типа датчиков угловых скоростей, датчиков линейных, угловых ускорений и т.д. Согласно заявленному изобретению преобразуют измеряемую физическую величину в переменный электрический сигнал, амплитуда которого пропорциональна физической величине. Осуществляют выпрямление сигнала с помощью детектора, выполненного на двух диодах, расположенных в корпусе микросборки из «n» диодов. Полученный постоянный сигнал усиливают и преобразуют в физическую величину, компенсирующую измеряемую физическую величину. При этом величина постоянного сигнала является мерой измеряемой физической величины. Третий диод микросборки используют в качестве датчика температуры, сигналом которого управляют током, протекающим через остальные последовательно соединенные «n-3» диода микросборки, обеспечивая при этом термостабилизацию внутри корпуса микросборки. Технический результат - повышение точности измерения физической неэлектрической величины за счет исключения из результатов измерения составляющей, обусловленной изменением температуры окружающей среды. 2 ил.

Формула изобретения RU 2 554 624 C1

Способ измерения физической неэлектрической величины, согласно которому преобразуют измеряемую физическую величину в переменный электрический сигнал, амплитуда которого пропорциональна физической величине, после чего осуществляют выпрямление сигнала с помощью детектора, выполненного на двух диодах, расположенных в корпусе микросборки из «n» диодов, полученный постоянный сигнал усиливают и преобразуют в физическую величину, компенсирующую измеряемую физическую величину, при этом величина постоянного сигнала является мерой измеряемой физической величины, отличающийся тем, что третий диод микросборки используют в качестве датчика температуры, сигнал датчика температуры управляется током, протекающим через остальные «n-3» последовательно соединенные диоды микросборки, обеспечивая при этом термостабилизацию внутри ее корпуса.

Документы, цитированные в отчете о поиске Патент 2015 года RU2554624C1

Нуберт Г.П., "Измерительные преобразователи неэлектрических величин", Л.:Энергия, 1970, стр.7
US 6959583 B2, 01.11.2005
US 5361637 A1, 08.11.1994
US 5806364 A, 15.09.1998
UD 5677485 A, 14.10.1997

RU 2 554 624 C1

Авторы

Сумароков Виктор Владимирович

Завгородний Владимир Иванович

Демидов Анатолий Николаевич

Даты

2015-06-27Публикация

2014-02-12Подача