КАМЕРА СГОРАНИЯ СИЛОВОЙ УСТАНОВКИ КРЫЛАТОЙ РАКЕТЫ Российский патент 2015 года по МПК F02K9/34 F02K9/62 

Описание патента на изобретение RU2554690C1

Предлагаемое техническое решение относится к области ракетных и реактивных двигательных установок и описывает устройство углерод-углеродной камеры сгорания маршевой силовой установки крылатой ракеты.

Известен корпус камеры сгорания летательного аппарата (патент РФ №2430306, 2010 г.), выполненный как многослойное изделие, содержащее металлическую обечайку, несущую механическую нагрузку, слой кремнеземной ткани, пропитанной высокотемпературным клеем и воедино соединенной им с внутренней поверхностью металлической обечайки, на который последовательно нанесены слой керамического композиционного материала, армированного углеродными волокнами, слой коррозионно-стойкого связующего материала и слой керамического композиционного высокотемпературного материала, контактирующего с образующимися при сжигании топлива газами с рабочей температурой порядка 1600°C. Толщина каждого слоя подобрана так, что температурная нагрузка на металлическую обечайку снижена до уровня, не требующего ее дополнительного наружного воздушного охлаждения. Использование такой камеры при температурах, близких к 2000°C, значительно сказывается на толщинах используемых слоев, что приводит к существенному увеличению габаритов и массы камеры сгорания, снижению экономичности установки. Многослойная составная конструкция усложняет изготовление и снижает надежность изделия в целом.

Целью предлагаемого технического решения является устранение указанных недостатков: уменьшение массы и габаритов камеры сгорания силовой установки крылатой ракеты при одновременном повышении экономичности силовой установки, а так же упрощение конструкции и повышение ее надежности.

Указанная цель достигается тем, что:

1. Камера сгорания силовой установки крылатой ракеты, выполненная в виде многослойного изделия, содержащая обечайку, несущую механическую нагрузку внутреннего давления, и слой теплозащитного керамического композиционного материала, контактирующего с образующимися при сжигании топлива газами, с коэффициентом линейного расширения и модулем упругости, обеспечивающим температурную и механическую совместимость с обечайкой и толщиной, подобранной таким образом, что дополнительное наружное воздушное охлаждение обечайки не требуется, отличающаяся тем, что обечайка выполнена из керамического композиционного высокотемпературного материала, армированного углеродными волокнами, с коэффициентом линейного расширения не более 5,2·10-6 1/°C, модулем упругости не менее 13·103 МПа, пределом прочности не менее 90 МПа, причем слой теплозащитного коррозионно-стойкого керамического материала, контактирующего с газами рабочей температурой не более 2000°C, имеет коэффициент линейного расширения не более 5,5·10-6 1/°C.

2. Камера сгорания крылатой ракеты по п.1, отличающаяся тем, что камера сгорания выполнена неразъемной, обечайка выполнена зацело с нерегулируемым соплом силовой установки, имеет коническо-цилиндрическую форму, с расположенными на входной кромке штифто-шпилечными крепежными элементами для состыковки с силовой установкой.

Выполнение обечайки камеры сгорания (КС) из керамического композиционного высокотемпературного материала, армированного углеродными волокнами, позволяет работать на больших высотах и при больших скоростях полета с температурой в КС порядка 2000°C без охлаждения и увеличения толщины стенки КС, вследствие высокой термопрочности и термостойкости материала.

Повышение рабочей температуры продуктов сгорания топлива до 2000°C на рабочих режимах обеспечивает более высокую полноту сгорания топлива, что так же повышает экономичность силовой установки.

Штифто-шпилечное соединение для состыковки КС с силовой установкой позволяет компенсировать разность тепловых расширений КС и силовой установки и обеспечить надежность соединения.

Выполнение КС неразъемной коническо-цилиндрической формы повышает прочность конструкции, упрощает изготовление, снижает массу и габаритные размеры.

На фиг. 1 представлена предлагаемая камера сгорания крылатой ракеты с условно изображенной границей КС и сопла. На фиг. 2 изображены крепежные элементы КС к силовой установке.

Предлагаемая камера сгорания крылатой ракеты фиг. 1.

Обечайка камеры сгорания - 1

Сопловая часть камеры сгорания - 2

Шпильки - 3

Штифт - 4

Защитное керамическое покрытие - 5.

Камера сгорания (КС) крылатой ракеты имеет коническо-цилиндрическую форму, состоит из обечайки камеры сгорания (1) и сопловой части (2), выполненных зацело из керамического материала. Со стороны протекания продуктов сгорания на поверхность обечайки КС и сопла нанесено теплозащитное керамическое покрытие (5), непосредственно контактирующее с продуктами сгорания, снижающего тепловой поток и защищающего от окисления корпус КС. На входе КС в относительно холодной зоне, не подвергаясь усиленному тепловому воздействию, с торцевой части, расположены шпильки (3) и штифт (4) для состыковки КС с силовой установкой крылатой ракеты.

Камера сгорания является составной частью силовой установки. Отсутствие необходимости охлаждения КС повышает экономичность силовой установки, за счет использования всего предварительно сжатого воздуха, проходящего через силовую установку, для получения тяги.

Таким образом, предложенная камера сгорания крылатой ракеты, выполненная зацело с соплом, имеет следующие оригинальные технические решения:

обечайка камеры выполнена из теплостойкого керамического материала, снижающего массу изделия, повышающего прочностные характеристики конструкции на высоких температурных режимах работы;

работа на высоких температурных режимах повышает экономичность силовой установки;

штифто-шпилечное соединение с силовой установкой снижает массу изделия, повышает надежность соединения и прочность конструкции в целом;

корпус камеры сгорания неразъемный, что позволяет уменьшить массу камеры, упростить технологию изготовления, повысить прочностные характеристики изделия;

камера сгорания неохлаждаемая, что позволяет повысить экономичность силовой установки, используя весь воздух для получения тяги; что позволяет существенно уменьшить габариты и массу КС и ракеты, повысить прочностные характеристики и упростить изготовление, а так же повысить тягово-экономические характеристики крылатой ракеты.

Похожие патенты RU2554690C1

название год авторы номер документа
Камера сгорания прямоточного воздушно-реактивного двигателя из композиционных материалов 2016
  • Барынин Вячеслав Александрович
  • Пашутов Аркадий Витальевич
  • Кульков Александр Алексеевич
  • Норкин Николай Степанович
  • Гашков Юрий Алексеевич
  • Антипов Евгений Алексеевич
  • Тимофеев Анатолий Николаевич
RU2643927C1
КОРПУС КАМЕРЫ СГОРАНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА 2010
  • Каримбаев Тельман Джамалдинович
  • Афанасьев Дмитрий Викторович
  • Даньшин Кирилл Анатольевич
  • Ежов Алексей Юрьевич
  • Луппов Алексей Анатольевич
RU2430306C1
Антенный обтекатель 2020
  • Духова Татьяна Александровна
  • Рогов Дмитрий Александрович
  • Воробьев Сергей Борисович
  • Латыш Сергей Иванович
  • Липатов Сергей Юрьевич
  • Антонов Владимир Викторович
  • Русин Михаил Юрьевич
  • Коваленко Павел Васильевич
RU2735381C1
ТЕРМОСИЛОВАЯ ОХЛАЖДАЕМАЯ КОНСТРУКЦИЯ СТЕНКИ ЭЛЕМЕНТА ВЫСОКОТЕМПЕРАТУРНОГО ВОЗДУШНО-ГАЗОВОГО ТРАКТА 2008
  • Шихман Юрий Моисеевич
  • Шлякотин Владимир Ефимович
  • Антыпко Людмила Вениаминовна
  • Меньшиков Александр Николаевич
RU2403491C2
РАКЕТНЫЙ ДВИГАТЕЛЬ НА СЫПУЧЕМ ТОПЛИВЕ 2019
  • Горшков Александр Александрович
RU2781320C2
КРЫЛАТАЯ РАКЕТА 2013
  • Дергачев Александр Анатольевич
  • Марцун Юрий Викторович
  • Минасбеков Дэвиль Авакович
  • Миронов Юрий Михайлович
  • Михеев Сергей Григорьевич
  • Хомяков Михаил Алексеевич
  • Чебаков Александр Владимирович
RU2534838C1
ТЕРМОЭРОЗИОННОСТОЙКОЕ ПОКРЫТИЕ ДЛЯ УГЛЕРОД-УГЛЕРОДИСТЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2014
  • Бабин Сергей Васильевич
  • Балакирев Александр Николаевич
  • Козлов Вячеслав Николаевич
  • Хренов Вадим Владимирович
RU2568205C2
РАКЕТНЫЙ ДВИГАТЕЛЬ НА ТВЕРДОМ ТОПЛИВЕ 2006
  • Евграшин Юрий Борисович
  • Бульбович Роман Васильевич
  • Хабибулин Артур Фаданисович
  • Платонов Евгений Витальевич
  • Богданова Вера Николаевна
  • Коскова Елена Геннадьевна
RU2312999C1
АНТЕННЫЙ ОБТЕКАТЕЛЬ 2004
  • Ромашин Александр Гаврилович
  • Светлов Владимир Григорьевич
  • Русин Михаил Юрьевич
  • Хора Александр Николаевич
  • Колоколов Леонид Иванович
  • Ромашин Владимир Гаврилович
  • Куракин Владимир Иванович
  • Туманов Анатолий Иванович
RU2277738C1
РАСТРУБ СОПЛА РАКЕТНОГО ДВИГАТЕЛЯ С ТЕПЛОВОЙ ИЗОЛЯЦИЕЙ 2015
  • Волков Николай Николаевич
  • Волкова Лариса Ивановна
  • Давыденко Николай Андреевич
  • Ульянова Марина Викторовна
  • Цацуев Сергей Михайлович
RU2595295C1

Иллюстрации к изобретению RU 2 554 690 C1

Реферат патента 2015 года КАМЕРА СГОРАНИЯ СИЛОВОЙ УСТАНОВКИ КРЫЛАТОЙ РАКЕТЫ

Камера сгорания силовой установки крылатой ракеты выполнена в виде многослойного изделия и содержит обечайку, несущую механическую нагрузку внутреннего давления, и слой теплозащитного керамического композиционного материала, контактирующего с образующимися при сжигании топлива газами. Слой теплозащитного керамического композиционного материала имеет коэффициент линейного расширения и модуль упругости, обеспечивающие температурную и механическую совместимость с обечайкой, а также толщину, подобранную таким образом, что дополнительное наружное воздушное охлаждение обечайки не требуется. Обечайка выполнена из керамического композиционного высокотемпературного материала, армированного углеродными волокнами, с коэффициентом линейного расширения не более 5,2·10-6 1/°C, модулем упругости не менее 13·103 МПа, пределом прочности не менее 90 МПа. Слой теплозащитного коррозионно-стойкого керамического материала, контактирующего с газами рабочей температурой не более 2000°С, имеет коэффициент линейного расширения не более 5,5·10-6 1/°C. Изобретение позволяет снизить массу и габариты камеры сгорания силовой установки крылатой ракеты, а так же упростить ее конструкцию и повысить надежность. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 554 690 C1

1. Камера сгорания силовой установки крылатой ракеты, выполненная в виде многослойного изделия, содержащая обечайку, несущую механическую нагрузку внутреннего давления, и слой теплозащитного керамического композиционного материала, контактирующего с образующимися при сжигании топлива газами, с коэффициентом линейного расширения и модулем упругости, обеспечивающим температурную и механическую совместимость с обечайкой и толщиной, подобранной таким образом, что дополнительное наружное воздушное охлаждение обечайки не требуется, отличающаяся тем, что обечайка выполнена из керамического композиционного высокотемпературного материала, армированного углеродными волокнами, с коэффициентом линейного расширения не более 5,2·10-6 1/°C, модулем упругости не менее 13·103 МПа, пределом прочности не менее 90 МПа, причем слой теплозащитного коррозионно-стойкого керамического материала, контактирующего с газами рабочей температурой не более 2000°С, имеет коэффициент линейного расширения не более 5,5·10-6 1/°C.

2. Камера сгорания крылатой ракеты по п. 1, отличающаяся тем, что камера сгорания выполнена неразъемной, обечайка выполнена зацело с нерегулируемым соплом силовой установки, имеет коническо-цилиндрическую форму, с расположенными на входной кромке штифто-шпилечными крепежными элементами для состыковки с силовой установкой.

Документы, цитированные в отчете о поиске Патент 2015 года RU2554690C1

КОРПУС КАМЕРЫ СГОРАНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА 2010
  • Каримбаев Тельман Джамалдинович
  • Афанасьев Дмитрий Викторович
  • Даньшин Кирилл Анатольевич
  • Ежов Алексей Юрьевич
  • Луппов Алексей Анатольевич
RU2430306C1
ГАЗОТУРБИННАЯ УСТАНОВКА С ОБЛИЦОВАННЫМ КЕРАМИЧЕСКИМИ КАМНЯМИ КОРПУСОМ КАМЕРЫ СГОРАНИЯ 1998
  • Найдель Андреас
  • Рашке Клаус
RU2178530C2
US 6389801 B1, 21.05.2002
Пломбировальные щипцы 1923
  • Громов И.С.
SU2006A1
US 5352529 A, 04.10.1994
Узел встройки тензодатчика и ударопрочные весы на его основе 2018
  • Гололобов Михаил Станиславович
RU2699036C1

RU 2 554 690 C1

Авторы

Дергачев Александр Анатольевич

Марцун Юрий Викторович

Минасбеков Дэвиль Авакович

Чебаков Александр Владимирович

Шевченко Иван Михайлович

Даты

2015-06-27Публикация

2014-07-01Подача