СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛБЕНДАЗОЛА Российский патент 2015 года по МПК A61K31/4184 A61K9/51 B82B1/00 B01J13/06 

Описание патента на изобретение RU2554739C1

Изобретение относится к области нанотехнологии, в частности получения нанокапсул албендазола.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в Пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. 2091071, МПК A61K 35/10, Российская Федерация, опубликован 27.09.1997, предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатками способа являются применение шаровой мельницы и длительность процесса.

В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 оборотов/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения микрокапсул, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул албендазола, характеризующийся тем, что в качестве оболочки нанокапсул используется альгинат натрия при их получении физико-химическим методом осаждения нерастворителем с использованием осадителя-хлороформа, процесс получения осуществляется без специального оборудования.

Отличительной особенностью предлагаемого метода является использование альгината натрия в качестве оболочки нанокапсул, албендазола - в качестве их ядра, а также использование осадителя-хлороформа.

Результатом предлагаемого метода являются получение нанокапсул албендазола в альгинате натрия при 25°C в течение 20 минут. Выход нанокапсул составляет более 90%.

ПРИМЕР 1

Получение нанокапсул албендазола, соотношение ядро/полимер 1:3

1 г албендазола небольшими порциями добавляют в суспензию альгината натрия в бутаноле, содержащую 3 г альгината натрия в присутствии 0,01 г препарата E472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием), при перемешивании 1000 об/сек. Далее приливают 6 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г белого порошка. Выход составил 100%.

ПРИМЕР 2

Получение нанокапсул албендазола, соотношение ядро/полимер 3:1

3 г албендазола небольшими порциями добавляют в суспензию альгината натрия в бутаноле, содержащую 1 г альгината натрия в присутствии 0,01 г препарата E472 с, при перемешивании 1000 об/сек. Далее приливают 6 мл хлороформа. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г белого порошка. Выход составил 100%.

Получены нанокапсулы албендазола физико-химическим методом осаждения нерастворителем с использованием осадителя-хлороформа, что способствует увеличению выхода и ускоряет процесс нанокапсулирования. Процесс прост в исполнении и длится в течение 20 минут, не требует специального оборудования.

Предложенная методика пригодна для ветеринарной промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения микрокапсул.

Похожие патенты RU2554739C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛБЕНДАЗОЛА 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
RU2557948C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛБЕНДАЗОЛА 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
RU2554783C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛБЕНДАЗОЛА 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
RU2558082C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЦЕФАЛОСПОРИНОВЫХ АНТИБИОТИКОВ В КСАНТАНОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2550932C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ЦЕФАЛОСПОРИНОВЫХ АНТИБИОТИКОВ В АЛЬГИНАТЕ НАТРИЯ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2561683C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ СЕЛ-ПЛЕКСА, ОБЛАДАЮЩИХ СУПРАМОЛЕКУЛЯРНЫМИ СВОЙСТВАМИ 2014
  • Кролевец Александр Александрович
  • Сеин Олег Борисович
  • Богачев Илья Александрович
RU2556118C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ФЕНБЕНДАЗОЛА 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
RU2550923C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АМИНОГЛИКОЗИДНЫХ АНТИБИОТИКОВ В АЛЬГИНАТЕ НАТРИЯ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2563118C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИБИОТИКОВ В АГАР-АГАРЕ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2576236C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ БИОПАГА-Д 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
RU2550950C1

Реферат патента 2015 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АЛБЕНДАЗОЛА

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядра нанокапсул используется албендазол, в качестве оболочки - альгинат натрия, который осаждают из суспензии в бутаноле путем добавления хлороформа в качестве нерастворителя при 25°С. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе). 2 пр.

Формула изобретения RU 2 554 739 C1

Способ инкапсуляции лекарственного препарата методом осаждения нерастворителем, отличающийся тем, что в качестве ядра нанокапсул используется албендазол, в качестве оболочки - альгинат натрия, который осаждают из суспензии в бутаноле путем добавления хлороформа в качестве нерастворителя при 25°С.

Документы, цитированные в отчете о поиске Патент 2015 года RU2554739C1

СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
Солодовник В.Д
Микрокапсулирование/М.: Химия, 1980г
Приспособление для подвешивания тележки при подъемках сошедших с рельс вагонов 1920
  • Немчинов А.А.
SU216A1
АНТИГЕЛЬМИНТНОЕ СРЕДСТВО 2001
  • Коваленко Ф.П.
  • Новик Т.С.
  • Бессонов А.С.
  • Черникова Е.А.
  • Михалев В.Ю.
  • Лебедева М.Н.
  • Шатверян Г.А.
  • Мусаев Г.Х.
  • Журавлева Н.А.
  • Буланова Т.Е.
RU2195280C1
WO 2010075065 A2, 01.07.2010
CN 102525947 A, 04.07.2012
WO 2012035561 A2, 22.03.2012

RU 2 554 739 C1

Авторы

Кролевец Александр Александрович

Богачев Илья Александрович

Даты

2015-06-27Публикация

2014-03-25Подача