FIELD: construction.
SUBSTANCE: invention may be used in applied hydroacoustics for provision of safety (industrial and environmental) of hydraulic engineering structures (HES) of high hazard facilities: nuclear power plants (NPPs), hydraulic power plants, heat power plants, tidal power plants, offshore oil and gas platforms, etc. In particular (with regard to NPPs) for: protection against penetration into a water supply channel (WSC) 2 of above-water (AWSC) 12 and underwater (UWSC) 13 subverter carriers, as well as underwater subverters (UWS) 11 themselves; protection of mature fish (MF) 14 and young fish (YF) 15 against ingress into the water supply channel (WSC) 2 and directly into a water intake window (WIW) 4; treatment of water from mechanical (MA) 17 and biological (BA) 18 admixtures and biogrowths (BG) 16; acoustic degassing of water. The method consists in physical retaining of AWSC, SWSC and UWS by formation of a combined air bubble curtain at the inlet to the water supply channel 2, sharp reduction of density of water medium and subsequent dropping of the AWSC 12, SWSC 13 or directly the UWS 11 itself to the bottom. Mechanical retention of AWSC 12 is carried out by means of installation of a power boom containment at the inlet and across the water supply channel 2 and subsequence damage of the AWSC 12 body. Multi-stage and combined acoustic displacement of UWS 11 is carried out, as well as multi-stage and combined non-lethal damage of UWS 11, and multi-stage and combined displacement of fish 14, including young fish 15. Combined treatment of water from mechanical admixtures 17, biological admixtures 18 and biogrowths 16 is carried out at the inlet to the water supply channel 2, as well as multi-stage and combined acoustic immobilisation and acoustic destruction of biogrowths 16. The method also includes acoustic degassing of water at the outlet from the water supply channel 2 - in the area of the water-intake window 4.
EFFECT: invention provides for required safety of NPP HES.
11 dwg
Authors
Dates
2015-07-10—Published
2014-01-24—Filed