Изобретение относится к сварке, а именно к способам соединения деталей из литейного жаропрочного сплава на никелевой основе методом диффузионной сварки, и может быть использовано для изготовления тяжелонагруженных деталей, работающих при повышенных температурах в двигателях внутреннего сгорания, паровых и газовых турбинах, реактивных двигателях, атомно-энергетических установках и т.д.
Прототипом данного изобретения является способ диффузионной сварки сложнолегированных жаропрочных никелевых сплавов (Казаков Н.Ф. Диффузионная сварка материалов. - М.: Машиностроение, 1976 г., 312 с.). Способ заключается в том, диффузионную сварку проводят при температуре 1000°С, удельное давление сжатия 2 кг/мм2, с последующей выдержкой при 1200°С в течение 20 мин.
Недостатком этого способа является, то что за время сварки при указанной температуре (не более 20 мин) не успевает сформироваться прочное соединение. Температура 1000°С для сварки литейных жаропрочных сплавов на никелевой основе низкая для диффузионной активности. Свойства, характеризующие пластичность, по сравнению со свойствами основного металла занижены. Сварное соединение имеет низкую прочность на разрыв.
Известен способ изготовления детали из литейных никелевых сплавов ЖС32 и ЖС32МОНО (патент №2494161, МПК С22С 19/00, В23К 20/14, В23К 103/08, дата публикации 27.09.2013 г.), по которому изготовляют детали из литейных никелевых сплавов ЖС32 или ЖС32МОНО, которые в себя включают не менее двух фрагментов детали из упомянутых сплавов путем диффузионной конгломерации с приложением нагрузки 11 г/мм2 в вакууме при температуре 1320°С в течение 40 мин - 1 ч.
Недостатком этого способа является то, что для двигателестроения, где предъявляются высокие требования к характеристикам сварных соединений, химическому составу и микроструктуре зоны сварки приложенная нагрузка 11 г/мм2 недопустима, т.к. эксплуатационные и прочностные характеристики сварных деталей по этой причине снижаются. Отсутствие требуемой нагрузки не позволяет стабилизировать и повысить прочностные свойства соединений, т.к. крайне низкая диффузионная активность.
Задача, на решение которой направлено изобретение, заключается в разработке способа диффузионной сварки литейного жаропрочного сплава на никелевой основе без промежуточных прослоек в вакууме с оптимальным подбором режимов сварки. Это позволяет:
- исключить изменения в структуре свариваемого материала;
- минимизировать пластическую деформацию детали;
- обеспечить необходимую стабильную прочность соединения.
Указанный технический результат достигается тем, что в предлагаемом способе диффузионной сварки из литейного жаропрочного сплава на никелевой основе, включающем сборку элементов под сварку, вакуумирование, температуру сварки выбирают из соотношения 0,987Ts<Тсв<1,001Тлп, где Тлп - температура локального плавления литейного сплава, Тсв - температура сварки, Ts - температура солидуса свариваемого материала, а сжатие осуществляют сварочным усилием 1-3 кг/мм2, обеспечивающим макропластическую деформацию в течение времени, которое требуется на осуществление процесса сварки, 0,5-2,5 часа, затем снимают сварочное усилие и охлаждают до комнатной температуры со скоростью не более 30-50°С/мин.
Экспериментально установлено, что при таком удельном давлении и за это время пластическая деформация свариваемых деталей не превышает 5%, что указывает на то, что происходит лишь деформация микровыступов на свариваемых поверхностях. А это, в свою очередь, не приводит к структурным изменениям в сплаве, что положительно влияет на прочность сварного соединения. Кроме того, для повышения технологических характеристик после снятия сварочного усилия охлаждают до комнатной температуры со скоростью не более 30-50°С/мин.
Сущность предлагаемого изобретения заключается в том, что выбранный режим диффузионной сварки, позволяет активизировать диффузионные процессы, протекающие в зоне контакта. А выбранная скорость охлаждения способствует выделению упрочняющих частиц, стабилизации структуры сплава, что обеспечивает высокий уровень прочности и неизменность микроструктуры материала. Все это увеличивает ресурс и надежность сварной конструкции, работающей в условиях жесткого нагружения.
Пример 1
Были изготовлены детали из сплава ЖС32 с размерами 17×40 каждая. Детали под сварку собирались торцевыми поверхностями и помещались в диффузионную установку. Рабочую камеру установки вакуумировали, нагревали до температуры сварки, определяемой из следующего соотношения: 0,987Ts<Тсв<1,001Тлп, где Тлп - температура локального плавления литейного сплава, Тсв - температура сварки, Тсв=1328°С, Ts - температура солидуса свариваемого материала, а сжатие осуществляли сварочным усилием 1 кг/мм2, обеспечивающим макропластическую деформацию в течение времени, которое требуется на осуществление процесса сварки, 1,5 часа. Затем снимают сварочное усилие и охлаждают до комнатной температуры со скоростью не более 30-50°С/мин.
Пример 2
Были изготовлены детали из сплава ЖС32 с размерами 17×40 каждая. Детали под сварку собирались торцевыми поверхностями и помещались в диффузионную установку. Рабочую камеру установки вакуумировали, нагревали до температуры сварки, определяемой из следующего соотношения 0,987Ts<Тсв<1,001Тлп, где Тлп - температура локального плавления литейного сплава, Тсв - температура сварки, Тсв=1290°С, Ts - температура солидуса свариваемого материала, а сжатие осуществляли сварочным усилием 2,5 кг/мм2, обеспечивающим макропластическую деформацию в течение времени, которое требуется на осуществление процесса сварки, 2,5 часа. Затем снимали сварочное усилие и охлаждали до комнатной температуры со скоростью не более 30-50°С/мин.
Пример 3
Были изготовлены детали из сплава ЖС32 с размерами 17×40 каждая. Детали под сварку собирались торцевыми поверхностями и помещались в диффузионную установку. Рабочую камеру установки вакуумировали, нагревали до температуры сварки, определяемой из следующего соотношения 0,987Ts<Тсв<1,001Тлп, где Тлп - температура локального плавления литейного сплава, Тсв - температура сварки Тсв=1322°С, Ts - температура солидуса свариваемого материала, а сжатие осуществляли сварочным усилием 2 кг/мм2, обеспечивающим макропластическую деформацию в течение времени, которое требуется на осуществление процесса сварки, 1 час. Затем снимали сварочное усилие и охлаждали до комнатной температуры со скоростью не более 30-50°С/мин.
Результаты испытаний механических свойств деталей из ЖС32 при температуре 20°С и рабочей температуре 650°С по стандартным методикам испытания представлены в таблице.
Таким образом, предлагаемый способ обеспечивает на деталях при рабочей температуре 650°С получение жаропрочности гораздо выше по сравнению с прототипом и более высокий уровень прочности, сохранение высокой пластичности. Сварные соединения имеют механические свойства, равноценные основному металлу.
В результате применения предлагаемого способа сварки деталей из литейного жаропрочного сплава на никелевой основе методом диффузионной сварки значительно повышается их ресурс и надежность. Кроме того, возможность получения сварных соединений из таких сплавов может привести к изменению конструкций двигателей, уменьшению их массы.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛИ ИЗ ЛИТЕЙНЫХ НИКЕЛЕВЫХ СПЛАВОВ ЖС32 И ЖС32МОНО | 2011 |
|
RU2494161C2 |
СПОСОБ ДИФФУЗИОННОЙ СВАРКИ ПОРОШКОВОГО ЖАРОПРОЧНОГО СПЛАВА НА НИКЕЛЕВОЙ ОСНОВЕ | 2014 |
|
RU2555279C1 |
СПОСОБ ДИФФУЗИОННОЙ СВАРКИ | 2002 |
|
RU2214896C1 |
Способ диффузионной сварки жаропрочного никелевого сплава | 2018 |
|
RU2689837C1 |
Способ соединения стекла с молибденовым сплавом | 2022 |
|
RU2795078C1 |
СПОСОБ ДИФФУЗИОННОЙ СВАРКИ КЕРАМОМАТРИЧНОГО КОМПОЗИТА С МЕТАЛЛАМИ | 2015 |
|
RU2593066C1 |
СПОСОБ ДИФФУЗИОННОЙ ПАЙКИ РОТОРА ГТД КОНСТРУКЦИИ "БЛИСК" ИЗ ЖАРОПРОЧНЫХ НИКЕЛЕВЫХ СПЛАВОВ | 2009 |
|
RU2414350C1 |
СПОСОБ ДИФФУЗИОННОЙ СВАРКИ | 2014 |
|
RU2579413C1 |
Способ сварки деталей из жаропрочных сплавов на никелевой основе с использованием лазерного излучения | 2020 |
|
RU2752822C1 |
СПОСОБ СБОРКИ ВАКУУМНОЙ ОБОЛОЧКИ РЕНТГЕНОВСКОГО ЭЛЕКТРОННО-ОПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ | 1999 |
|
RU2149479C1 |
Изобретение относится к способу диффузионной сварки элементов из литейных жаропрочных сплавов на никелевой основе. Изобретение может быть использовано для изготовления рабочих лопаток, дисков газовых турбин и др., которые работают при высоких нагрузках и температурах. Собирают элементы под сварку, вакуумируют. Нагревают элементы до температуры, определяемой из следующего соотношения: 0,987Тs<Тсв<1,001Тлп, где Тлп - температура локального плавления литейного сплава, Тсв - температура сварки, Ts - температура солидуса свариваемого материала, а сжатие осуществляют сварочным усилием 1-3,5 кг/мм2, обеспечивающим макропластическую деформацию в течение времени, требуемого на осуществление процесса сварки, 0,5-2,5 часа. Затем снимают сварочное усилие и охлаждают до комнатной температуры со скоростью не более 30-50°C/мин. Изобретение позволяет получить сварное соединение требуемого качества с необходимой прочностью не менее 90% от прочности основного материала и с сохранением однородной мелкозернистой рекристаллизованной структуры, что позволяет проводить дальнейшую механическую обработку деталей. Кроме того, применение диффузионной сварки позволяет упростить конструкцию изделий, повысить технологичность и уменьшить массу конструкций. 1 табл.
Способ диффузионной сварки элементов из литейного жаропрочного сплава на никелевой основе, включающий сборку элементов под сварку и вакуумирование, отличающийся тем, что температуру сварки выбирают из соотношения: 0,987Ts <Тсв<1,001Тлп, где Тлп - температура локального плавления литейного сплава, Тсв - температура сварки, Ts - температура солидуса свариваемого материала, а сжатие осуществляют сварочным усилием 1-3 кг/мм2 с обеспечением макропластической деформации в течение 0,5-2,5 часа, а затем снимают сварочное усилие и охлаждают до комнатной температуры со скоростью не более 30-50°C/мин.
КАЗАКОВ Н.Ф | |||
"ДИФФУЗИОННАЯ СВАРКА МАТЕРИАЛОВ" М., МАШИНОСТРОЕНИЕ, 1976г | |||
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛИ ИЗ ЛИТЕЙНЫХ НИКЕЛЕВЫХ СПЛАВОВ ЖС32 И ЖС32МОНО | 2011 |
|
RU2494161C2 |
Способ соединения хрома с никелем и никелевыми сплавами | 1990 |
|
SU1779512A1 |
US 3530568 A1, 29.09.1970 | |||
US 4919323 A, 24.04.1990 |
Авторы
Даты
2015-08-10—Публикация
2014-04-08—Подача