СПОСОБ ПОИСКА ЦИФРОВОГО ИЗОБРАЖЕНИЯ, СОДЕРЖАЩЕГО ЦИФРОВОЙ ВОДЯНОЙ ЗНАК Российский патент 2015 года по МПК G06K9/62 

Описание патента на изобретение RU2559773C2

Изобретение относится к области стеганографии, а именно к способам идентификации цифровых изображений (ЦИ), содержащих цифровой водяной знак (ЦВЗ), и может быть использовано для различения оригинального ЦИ, защищенного авторскими правами с помощью внедренного в него ЦВЗ, от его копий, а также для поиска ЦИ различных форматов хранения, содержащих дополнительную цифровую информацию в условиях отсутствия априорных сведений о законе ее встраивания и присутствия в ЦИ.

Известен способ для идентификации данных ЦИ в формате хранения JPEG (US Patent №0040015697, МПК G06K 009/00, 2004 г.), позволяющий установить, действительно ли полученное ЦИ отправлено известным источником и не было ли содержимое файла незначительно модифицировано во время передачи. Для кодирования проверочной информации уникальная хеш-функция получается из первой части данных ЦИ, содержащихся в сжатом ЦИ формата хранения JPEG таким образом, что любые искажения указанной части данных ЦИ в дальнейшем были бы отражены в иной хеш-функции, полученной на основе принятого файла. Хеш-функция дает значение проверки целостности, записываемое в первую часть данных ЦИ. Далее это значение шифруется в строку подписи. Строка подписи встраивается в следующую часть данных ЦИ. Процесс повторяется до тех пор, пока все части данных ЦИ не будут обработаны. Строка подписи, соответствующая последней части данных, встраивается в эту часть. Так как внедрение значения проверки целостности не изменяет последовательности данных файла формата хранения JPEG, любой декодер после этого может декодировать ЦИ. Далее файл ЦИ передается предназначенному получателю. Для декодирования получателем внедренной проверочной информации относительно подлинности отправителя файла формата хранения JPEG хеш-функция вычисляется на основе первой части данных принятого ЦИ. Вторая часть данных характеризует местоположение, где была внедрена строка подписи для первой части данных. В этом случае подпись извлекается из данных. После чего строка подписи дешифруется в виде результата хеш-функции (проверки целостности), содержащейся в самих данных. Эти два числа сравниваются друг с другом. Если первое проверочное число соответствует числу, содержащемуся в найденной строке подписи, которая была ранее внедрена автором, то принимается решение, что данные первой части ЦИ подлинны. Процесс повторяется для каждой последующей части данных, пока не будут обработаны все части данных ЦИ.

Также известен способ идентификации ЦИ, содержащего многократный ЦВЗ (US Patent №20050058320, МПК G06K 009/00, 2005 г.), включающий этап встраивания в документ (ЦИ) дополнительной информации, состоящей из двух типов ЦВЗ, соединенный с этапом считывания встроенных ЦВЗ из идентифицируемого документа (ЦИ), который в свою очередь соединен с этапом сравнения полученных энергетических характеристик считанных ЦВЗ двух типов с образцом, соединенным с этапом принятия решения о несанкционированном копировании идентифицируемого документа (ЦИ).

Приведенные выше аналоги применяются в области защиты авторских прав и обеспечивают различение документов-оригиналов (ЦИ оригиналов) от их копий, полученных путем распечатки и сканирования, однако недостатком вышеперечисленных способов является то, что они применяются только в условиях присутствия априорных сведений о законе встраивания ЦВЗ, в противном случае вышеперечисленные способы становятся неэффективными и различить, является ли идентифицируемый документ (ЦИ) копией или оригиналом, не представляется возможным.

Наиболее близким по технической сущности к заявляемому изобретению (прототипом) является способ идентификации цифрового изображения, содержащего цифровой водяной знак (патент RU №2304306, МПК G06K 009/00, 2007 г.), включающий предварительную обработку ЦИ, формирование собственного характеристического вектора (СХВ) ЦИ, классификацию изображения к одному из двух классов.

Такой способ осуществляют в два этапа, называемых «обучение» и «анализ». Предварительная обработка ЦИ включает процедуру формирования обучающей выборки из ЦИ, содержащих встроенные случайным образом ЦВЗ, процедуру формирования трех двумерных массивов значений интенсивности точек каждого ЦИ в виде карты пикселей цветовой схемы RGB (красной, зеленой, синей). Далее формирование СХВ содержит процедуру многоуровневого двумерного дискретного вейвлет-преобразования (необходимо не менее трех уровней вейвлет-преобразования) над каждым массивом интенсивностей точек трех цветовых составляющих в отдельности с последующим вычислением статистических характеристик высоких порядков из распределения вейвлет-коэффициентов на разных поддиапазонах вейвлет-преобразования. Одновременно с процедурой вычисления статистических характеристик высоких порядков из распределения вейвлет-коэффициентов на разных поддиапазонах вейвлет-преобразования вычисляют ошибку предсказания значений вейвлет-коэффициентов на разных поддиапазонах n-го уровня вейвлет-преобразования, а также на поддиапазонах последующего n+1-го уровня вейвлет-преобразования для вертикального, горизонтального и диагонального поддиапазонов соответственно. Данными статистическими характеристиками являются выборочное среднее, выборочная дисперсия, асимметрия и эксцесс. Все вычисленные значения статистических характеристик включают в СХВ ЦИ. После формирования массива СХВ всех ЦИ из обучающей выборки выполняют классификацию изображения к одному из двух классов следующим образом: обучают классификатор, построенный на основе дискриминантного анализа для линейной дискриминации ЦИ из обучающей выборки на два класса: ЦИ, содержащие ЦВЗ, и ЦИ, не содержащие ЦВЗ. После этого ″обучение″ заканчивают и начинают ″анализ″.

″Анализ″ включает все процедуры, описанные выше, только теперь с помощью сформированного СХВ классифицируют анализируемые изображения к одному из двух классов, используя результаты дискриминации всех СХВ, полученных от ЦИ из обучающей выборки при ″обучении″.

Такой способ используется в области защиты авторских прав и обеспечивает идентификацию ЦИ, содержащих ЦВЗ, в условиях отсутствия априорных сведений о законе встраивания ЦВЗ. Недостатком способа является большая вероятность ложной тревоги (ошибки первого рода) вследствие нестационарности ЦИ (двумерного сигнала).

Задачей изобретения является разработка способа поиска цифрового изображения, содержащего цифровой водяной знак, обеспечивающего работу в условиях отсутствия априорных сведений о законе встраивания ЦВЗ, при этом способ должен обеспечивать низкий уровень вероятности ложной тревоги (ошибки первого рода).

Эта задача решается тем, что в способ идентификации цифрового изображения, содержащего цифровой водяной знак, между предварительной обработкой ЦИ и классификацией изображения к одному из двух классов последовательно введены процедура выделения фрагментов ЦИ, содержащих повторяющиеся элементы, процедура преобразования фрагментов ЦИ из карты пикселей цветовой схемы RGB (красной, зеленой, синей) в карту пикселей цветовой схемы, выраженную через длину волны непрерывного спектра видимого оптического диапазона, процедура анализа выделенных фрагментов изображения, процедура формирования собственного характеристического вектора изображения, содержащего статистические характеристики изображения, представленного через длины волн непрерывного спектра видимого оптического диапазона.

Введение новых процедур позволяет идентифицировать ЦИ, содержащее ЦВЗ, в условиях отсутствия априорных сведений о законе и месте встраивания ЦВЗ, при этом введение процедуры преобразования фрагментов ЦИ из карты пикселей цветовой схемы RGB (красной, зеленой, синей) в карту пикселей цветовой схемы, выраженную через длину волны непрерывного спектра видимого оптического диапазона, дает возможность устранения нестационарности двумерного сигнала (ЦИ).

Простейшим повторяющимся элементом на ЦИ является одиночный пиксель в случае монохромного (однородного) фрагмента (деталь кузова автомобиля, участок стены дома, дороги или неба). Априори известно, что, например, детали кузова подавляющею числа автомобилей окрашены одним цветом, следовательно, имеют один оттенок. При обнаружении на таких монохромных (однородных) фрагментах элементов (пикселей) другого оттенка цвета можно предположить, что ЦИ содержит встроенный ЦВЗ.

Другим примером повторяющегося элемента может служить периодически или не периодически повторяющиеся геометрическая фигура или сложный рисунок. Такие элементы будут присутствовать, например, на фрагменте ЦИ участков стенных обоев или дорожной плитки, мозаики Пенроуза (Журнал «Наука и жизнь», 2013 г., выпуск №6, Картина мира на листе бумаги. Стр.40). Обнаружение нарушения геометрической формы или искажения рисунка отдельных элементов на фрагменте с периодически или не периодически повторяющимися заведомо одинаковыми элементами может быть сигналом для более детального изучения ЦИ на предмет содержания в нем встроенного ЦВЗ.

Участок радуги является классическим фрагментом, содержащим повторяющиеся элементы с плавным переходом оттенков всего спектра видимого оптического диапазона. Так как порядок следования оттенков цвета, представленных RGB кодами, отличается от порядка следования оттенков цвета в непрерывном спектре видимого оптического диапазона, то при встраивании ЦВЗ в значения интенсивностей точек ЦИ в любую из трех цветовых составляющих в виде карты пикселей цветовой схемы RGB (красной, зеленой, синей) порядок следования оттенков цвета, например, в непрерывном спектре видимого оптического диапазона с большой долей вероятности будет нарушен.

Проведенный анализ уровня техники позволил установить, что аналоги, характеризующиеся совокупностью признаков, тождественных всем признакам заявленного технического решения, отсутствуют, что указывает на соответствие заявленного способа условию патентоспособности «новизна».

Результаты поиска известных решений в данной и смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа признаками заявленного объекта, показали, что они не следуют явным образом из уровня техники. Из уровня техники также не выявлена известность отличительных существенных признаков, обусловливающих тот же технический результат, который достигнут в заявляемом способе. Следовательно, заявленное изобретение соответствует условию патентоспособности «изобретательский уровень».

Заявленный способ поясняется чертежами, на которых показано:

фиг.1 - блок-схема реализации способа поиска ЦИ, содержащего ЦВЗ;

фиг.2 - сравнение результатов имитационного моделирования для способа-прототипа и заявленного способа.

Реализация заявленного способа заключается в следующем (фиг.1).

В процедуре предварительной обработки ЦИ осуществляют встраивание в ЦИ дополнительной информации с использованием различных алгоритмов встраивания с целью обучения классификатора. Затем формируют трехмерный массив значений интенсивности точек ЦИ в виде карты пикселей цветовой схемы RGB (красной, зеленой, синей) (Миано Д. Форматы и алгоритмы сжатия изображений в действии. - М.: ″Триумф″, 2003 г.) (блок 1).

Далее выделяют фрагменты ЦИ, содержащие повторяющиеся элементы (блок 2). Данную задачу рассматривают с точки зрения текстурно-цветовой сегментации, предполагая при этом, что исходные данные представлены в формате представления цветовой схемы RGB (красной, зеленой, синей) ЦИ, а монохромность (однородность) областей будет определяться на основе оценок их яркостных, цветовых и текстурных характеристик. Для нахождения периодичности в ЦИ используют свойства Фурье-спектра. В целом текстурно-цветовое пространство признаков получают объединением двух подпространств - цветовых и текстурных признаков. В качестве цветовых признаков используют следующие характеристики: цветность, насыщенность и яркость (HSL - hue, saturation, lightness). Данное пространство цветовых признаков совпадает с обычным RGB (красной, зеленой, синей) цветовым пространством с точностью до координатного преобразования (Чочиа П.А. Пирамидальный алгоритм сегментации изображений. Информационные процессы. Том 10, №1, 2010 г., с.23-35).

Далее осуществляют сегментацию ЦИ согласно алгоритму пирамидального преобразования (Чочиа П.А. Пирамидальный алгоритм сегментации изображений. Информационные процессы. Том 10, №1, 2010 г., с.23-35). Результатом сегментации является ЦИ в формате представления цветовой схемы RGB (красной, зеленой, синей), состоящее из смежных непересекающихся фрагментов, в геометрическом расположении точно соответствующих фрагментам, полученным в результате преобразования согласно алгоритму пирамидального преобразования (Чочиа П.А. Пирамидальный алгоритм сегментации изображений. Информационные процессы. Том 10, №1, 2010 г., с.23-35).

Затем над каждым фрагментом ЦИ выполняют преобразование из карты пикселей цветовой схемы RGB (красной, зеленой, синей) в карту пикселей цветовой схемы, выраженную через длину волны непрерывного спектра видимого оптического диапазона (блок 3). Например, в качестве одного из вариантов вышеуказанного преобразования возможно представление изображения, описывающее непрерывный спектр через длину волны видимого оптического диапазона известным способом (Татаринов А., Игнатенко А. Спектральный цвет и его реконструкция из RGB. Компьютерная графика и мультимедиа. Сетевой журнал. Выпуск №4 (3)/2006 г.).

Затем анализируют выделенные фрагменты изображения (блок 4). В результате анализа выделенных фрагментов изображения формируют признаковое пространство для каждого фрагмента изображения.

В качестве признака для монохромного (однородного) фрагмента изображения выступает среднее расстояние (средняя разность) между пикселями изображения, представленное длиной волны непрерывного спектра видимого оптического диапазона.

Среднее расстояние (средняя разность) между центральным пикселем изображения и смежными с ним пикселями, выраженными через длины волн непрерывною спектра видимого оптического диапазона, рассчитывают по формуле:

где Sср.i - среднее расстояние (средняя разность) для i-го пикселя;

zi - значения центральных пикселей, выраженные через длины волн непрерывного спектра видимого оптического диапазона;

mj - значения пикселей, смежных с центральным пикселем, выраженные через длины волн непрерывного спектра видимого оптического диапазона;

N - количество смежных пикселей (N∈[1, 8]).

После того как будут вычислены средние расстояния (средние разности) для каждого пикселя в рассматриваемом фрагменте изображения, рассчитывают среднее расстояние (средняя разность) для фрагмента изображения в целом:

где Sk - среднее расстояние (средняя разность) для k-го фрагмента;

M - общее количество пикселей в k-м фрагменте.

Далее средние расстояния (средние разности) Sk рассчитывают для всех k монохромных (однородных) фрагментов, в совокупности образующих целостное изображение.

Затем вычисляют среднее общее расстояние (среднюю общую разность) Sобщ для всего изображения в целом:

где L - количество монохромных (однородных) фрагментов в изображении.

Далее вычисляют дисперсию среднего расстояния (средней разности) пикселей анализируемого изображения для каждого монохромного (однородного) фрагмента по следующей формуле:

где Dk(X) - дисперсия среднего расстояния (средней разности) k-го фрагмента;

xi - значения пикселей изображения, выраженные значениями длин волн непрерывного спектра видимого оптического диапазона, в рассматриваемом k-м фрагменте изображения;

N - общее количество пикселей ЦИ в рассматриваемом k-м фрагменте, получаемых после выполнения процедуры сегментации ЦИ на монохромные (однородные) фрагменты.

Затем рассчитывают среднее значение дисперсии среднего расстояния (средней разности) всего изображения по формуле:

Далее из вычисленных значений формируют СХВ изображения, содержащий статистические характеристики изображения, представленного через длины волн непрерывного спектра видимого оптического диапазона (блок 5):

Процедура формирования СХВ изображения, содержащего статистические характеристики изображения, представленного через длины волн непрерывного спектра видимого оптического диапазона (блок 5), соединена обратной связью с процедурой предварительной обработки ЦИ (блок 1), что указывает на то, что все вышеописанные процедуры выполняют над каждым изображением из обучающей выборки отдельно.

В качестве признака для периодического фрагмента выступает соответствие геометрической формы повторяющихся элементов.

В качестве признака для фрагментов ЦИ, содержащих повторяющиеся плавные переходы оттенков спектра, является плавность функции второго порядка. Функция в этом случае будет представлять собой зависимость значения интенсивности пикселя ЦИ от его координаты.

После формирования массива признаков на основе теории распознавания образов (Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде MATLAB. Техносфера, Москва, 2006 г., с.502) известными методами производят классифицирование ЦИ на два класса: ЦИ, содержащие ЦВЗ, и ЦИ, не содержащие ЦВЗ (блок 6).

Правомерность теоретических предпосылок проверялась с помощью имитационных моделей системы-прототипа и системы, реализующей заявленный способ поиска ЦИ, содержащего ЦВЗ.

Показателем эффективности способов поиска ЦИ, содержащих ЦВЗ, является вероятность ложной тревоги (ошибки первого рода) Рл.т..

Для оценки качества функционирования разработанного способа были проведены эксперименты по обнаружению ЦИ, содержащих ЦВЗ. С этой целью были сформированы обучающие наборы для двух классов ЦИ и контрольная выборка. Обучающий набор для класса «чистый» состоял из 500 файлов различных форматов хранения ЦИ (JPEG, JPEG 2000, BMP). Обучающий набор для класса «стего» состоял из аналогичных файлов со встроенными ЦВЗ максимального объема. В контрольную выборку были включены 2000 файлов, не входящих в обучающие наборы, 1000 из которых содержали ЦВЗ максимального объема.

Для исследования зависимости вероятности ложной тревоги Рл.т. от объема ЦВЗ, используемого при обучении, дополнительно были сформированы обучающие выборки, содержащие ЦВЗ с различным объемом (Kзап).

Результаты, представленные на фиг.2, подтверждают существенный положительный эффект от внедрения нового способа.

Промышленная применимость изобретения обусловлена тем, что устройство, реализующее предложенный способ, может быть осуществлено с помощью современной элементной базы с достижением указанного в изобретении назначения.

Похожие патенты RU2559773C2

название год авторы номер документа
СПОСОБ ИДЕНТИФИКАЦИИ ЦИФРОВОГО ИЗОБРАЖЕНИЯ, СОДЕРЖАЩЕГО ЦИФРОВОЙ ВОДЯНОЙ ЗНАК 2006
  • Иванов Владимир Алексеевич
  • Стельмах Эдуард Петрович
  • Гатилов Олег Вячеславович
  • Скурнович Алексей Валентинович
RU2304306C1
СПОСОБ ИДЕНТИФИКАЦИИ ЗВУКОВОГО ФАЙЛА, СОДЕРЖАЩЕГО ЦИФРОВОЙ ВОДЯНОЙ ЗНАК 2008
  • Иванов Владимир Алексеевич
  • Гречишников Евгений Владимирович
  • Кирюхин Дмитрий Александрович
  • Гатилов Олег Вячеславович
  • Скурнович Алексей Валентинович
  • Иванов Иван Владимирович
RU2390054C2
СПОСОБ РАСПОЗНАВАНИЯ КОНТЕНТА СЖАТЫХ НЕПОДВИЖНЫХ ГРАФИЧЕСКИХ СООБЩЕНИЙ В ФОРМАТЕ JPEG 2018
  • Иванов Владимир Алексеевич
  • Скурнович Алексей Валентинович
  • Ревякин Андрей Михайлович
RU2680358C1
СПОСОБ СТЕГАНОГРАФИРОВАНИЯ ЦИФРОВОГО ИЗОБРАЖЕНИЯ С ПОМОЩЬЮ ГРАФИЧЕСКОЙ ЦИФРОВОЙ МЕТКИ И СПОСОБ ДЕШИФРОВАНИЯ СТЕГАНОГРАФИРОВАННОГО ИЗОБРАЖЕНИЯ 2020
  • Крамаренко Сергей Михайлович
  • Сысоев Валентин Валерьевич
RU2761417C1
СПОСОБ ПОИСКА ИЗОБРАЖЕНИЙ ФОРМАТА JPEG, СОДЕРЖАЩИХ ЦИФРОВОЙ ВОДЯНОЙ ЗНАК 2005
  • Баранов Владимир Алексеевич
  • Гатилов Олег Вячеславович
  • Скурнович Алексей Валентинович
  • Харченко Сергей Васильевич
  • Иванов Иван Владимирович
  • Кирюхин Дмитрий Александрович
RU2301447C2
СПОСОБ ОБЕСПЕЧЕНИЯ РОБАСТНОСТИ ЦИФРОВОГО ВОДЯНОГО ЗНАКА, ВСТРАИВАЕМОГО В СТАТИЧЕСКОЕ ИЗОБРАЖЕНИЕ, ПЕРЕДАВАЕМОЕ ПО КАНАЛУ СВЯЗИ С ПОМЕХАМИ 2022
  • Антонов Алексей Александрович
  • Финько Олег Анатольевич
  • Шпырня Игорь Валентинович
  • Рябинин Юрий Евгеньевич
  • Балюк Алексей Анатольевич
RU2785832C1
ЦВЕТНАЯ ПОСЛЕДОВАТЕЛЬНАЯ ВСПЫШКА ДЛЯ ПОЛУЧЕНИЯ ЦИФРОВЫХ ИЗОБРАЖЕНИЙ 2007
  • Шульц Фолькмар
RU2447471C2
СПОСОБ СЕГМЕНТАЦИИ ТЕКСТА ПО ЦВЕТОВОМУ ПРИЗНАКУ В ПРОЦЕССЕ КОПИРОВАНИЯ 2008
  • Ефимов Сергей Викентьевич
  • Рычагов Михаил Николаевич
  • Сафонов Илья Владимирович
  • Курилин Илья Васильевич
RU2368007C1
Программно-аппаратный комплекс, предназначенный для обработки аэрофотоснимков видимого и дальнего инфракрасного диапазонов с целью обнаружения, локализации и классификации строений вне населенных пунктов 2020
  • Балакчин Виктор Сергеевич
  • Балакчина Анастасия Викторовна
  • Гасникова Евгения Владимировна
  • Благушина Лариса Желалудиновна
  • Гаврилов Дмитрий Александрович
  • Гамиловский Сергей Витальевич
  • Еременко Артем Геннадьевич
  • Гутор Мария Александровна
  • Ефанов Николай Николаевич
  • Ефимов Вячеслав Юрьевич
  • Каврецкий Илья Леонидович
  • Косицын Владимир Петрович
  • Лапушкин Андрей Георгиевич
  • Маслов Дмитрий Александрович
  • Местецкий Александр Моисеевич
  • Местецкий Леонид Моисеевич
  • Пунь Андрей Богданович
  • Родионов Павел Борисович
  • Семенов Андрей Борисович
  • Соколов Глеб Михайлович
  • Татаринова Елена Александровна
  • Федоров Андрей Владимирович
  • Фонин Владимир Николаевич
  • Фонин Юрий Николаевич
  • Фортунатов Антон Александрович
RU2752246C1
УСТРОЙСТВО ДЛЯ ФЛУОРЕСЦЕНТНОЙ НАВИГАЦИИ В НЕЙРОХИРУРГИИ 2017
  • Лощенов Максим Викторович
  • Потапов Александр Александрович
  • Бородкин Александр Викторович
  • Гольбин Денис Александрович
  • Горяйнов Сергей Алексеевич
  • Линьков Кирилл Геннадьевич
  • Лощенов Виктор Борисович
RU2661029C1

Иллюстрации к изобретению RU 2 559 773 C2

Реферат патента 2015 года СПОСОБ ПОИСКА ЦИФРОВОГО ИЗОБРАЖЕНИЯ, СОДЕРЖАЩЕГО ЦИФРОВОЙ ВОДЯНОЙ ЗНАК

Изобретение относится к способу поиска цифровых изображений, содержащих цифровой водяной знак. Техническим результатом является обеспечение работы способа в условиях отсутствия априорных сведений о законе встраивания цифрового водяного знака, а также низкий уровень вероятности ложной тревоги. Способ поиска цифрового изображения, содержащего цифровой водяной знак, заключается в том, что предварительно обрабатывают цифровое изображение, классифицируют изображение к одному из двух классов, выделяют фрагменты цифрового изображения, содержащие повторяющиеся элементы, преобразуют их из карты пикселей цветовой схемы RGB в карту пикселей цветовой схемы, выраженную через длину волны непрерывного спектра видимого оптического диапазона, анализируют выделенные фрагменты изображения, формируют признаковое пространство для каждого фрагмента изображения; далее из вычисленных значений формируют собственный характеристический вектор изображения, содержащий статистические характеристики изображения, представленного через длины волн непрерывного спектра видимого оптического диапазона, и относят цифровое изображение к одному из двух классов: цифровое изображение, содержащее цифровой водяной знак, и цифровое изображение, не содержащее цифрового водяного знака. 2 ил.

Формула изобретения RU 2 559 773 C2

Способ поиска цифрового изображения, содержащего цифровой водяной знак, заключающийся в том, что предварительно обрабатывают цифровое изображение, классифицируют изображение к одному из двух классов, отличающийся тем, что выделяют фрагменты цифрового изображения, содержащие повторяющиеся элементы, преобразуют фрагменты цифрового изображения из карты пикселей цветовой схемы RGB в карту пикселей цветовой схемы, выраженную через длину волны непрерывного спектра видимого оптического диапазона, анализируют выделенные фрагменты изображения, в результате чего формируют признаковое пространство для каждого фрагмента изображения; далее из вычисленных значений формируют собственный характеристический вектор изображения, содержащий статистические характеристики изображения, представленного через длины волн непрерывного спектра видимого оптического диапазона, и относят цифровое изображение к одному из двух классов: цифровое изображение, содержащее цифровой водяной знак, и цифровое изображение, не содержащее цифрового водяного знака.

Документы, цитированные в отчете о поиске Патент 2015 года RU2559773C2

СПОСОБ ИДЕНТИФИКАЦИИ ЦИФРОВОГО ИЗОБРАЖЕНИЯ, СОДЕРЖАЩЕГО ЦИФРОВОЙ ВОДЯНОЙ ЗНАК 2006
  • Иванов Владимир Алексеевич
  • Стельмах Эдуард Петрович
  • Гатилов Олег Вячеславович
  • Скурнович Алексей Валентинович
RU2304306C1
СПОСОБ ФОРМИРОВАНИЯ И ПРОВЕРКИ ЗАВЕРЕННОГО ЦИФРОВЫМ ВОДЯНЫМ ЗНАКОМ ЭЛЕКТРОННОГО ИЗОБРАЖЕНИЯ 2010
  • Оков Игорь Николаевич
  • Сухов Тимофей Михайлович
  • Цветков Василий Валерьевич
RU2450354C1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
US 6865589 B2, 08.03.2005

RU 2 559 773 C2

Авторы

Иванов Владимир Алексеевич

Кирюхин Дмитрий Александрович

Радаев Сергей Владимирович

Пронкин Алексей Александрович

Романишин Геннадий Валерьевич

Битков Евгений Николаевич

Иванов Иван Владимирович

Даты

2015-08-10Публикация

2013-12-11Подача