СПОСОБ ОЦЕНКИ ФУНКЦИОНАЛЬНОГО И МЕТАБОЛИЧЕСКОГО СОСТОЯНИЯ НЕРВНОЙ ТКАНИ Российский патент 2015 года по МПК A61B5/04 A61B5/476 

Описание патента на изобретение RU2562230C1

Предлагаемое изобретение относится к медицине, а именно к неврологии, психопатологии, нейрохирургии, нейрофизиологии и экспериментальной нейробиологии, а также психофизиологии и предназначено для определения функционального и метаболического состояния нервной ткани в норме и при патологии.

Известен способ определения функционального и метаболического состояния нервной ткани путем проведения позитронно-эмиссионной томографии мозга [Buchsbaum MS, Gillin JC, Wu J, Hazlett E, Sicotte N, Dupont RM, Bunney WE Jr. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography // Life Sci 1989; 45(15): 1349-56]. Недостатком этого способа является сложность реализации, высокие экономические затраты и использование дорогостоящего оборудования для проведения исследования, необходимость предварительной подготовки пациентов к исследованию. Недостатками способа являются также невозможность проведения динамического контроля над состоянием мозга во время медицинских манипуляций в клинике, сложность и неудобство для реализации в экспериментальных исследованиях на мелких лабораторных животных.

Известен способ определения функционального и метаболического состояния нервной ткани путем регистрации суммарной медленной электрической активности мозга с поверхности головы (ЭЭГ) [Биопотенциалы мозга человека. Математический анализ. // Под ред. Русинова B.C. М.: Медицина, 1987, 254 с.]. Известно, что активационные процессы в нервной системе сопровождается депрессией альфа-активности. Развитие патологических состояний в связи с нарушением метаболизма, как при ишемии мозга, связано с появлением медленноволновой активности тета- и дельта-диапазонов. Угнетение функционального состояния при углублении гипоксии и ишемии приводит к депрессии ЭЭГ. Несмотря на наличие у данного способа ряда положительных свойств, он не позволяет тонко дифференцировать многие физиологические и патологические функциональные состояния (ФС).

Ближайшим аналогом является способ определения функционального и метаболического состояния нервной ткани / Патент РФ №2245673, A61B 5/04, A61B 5/0476, 2005 г./, включающий одновременную регистрацию электроэнцефалограммы (ЭЭГ) и уровня постоянного потенциала (УПП). При негативном сдвиге УПП и увеличении мощности ЭЭГ определяют деполяризационную активность нейронов и усиление метаболизма; при негативном сдвиге УПП и уменьшении мощности ЭЭГ - деполяризационное торможение нейронов и угнетение метаболизма; при позитивации УПП и увеличении мощности ЭЭГ - реполяризационную или гиперполяризационную активизацию нейронов и усиление метаболизма; при позитивации УПП и уменьшении мощности ЭЭГ - гиперполяризационное торможение нейронов и снижение метаболизма нервной ткани. Однако известный способ определяет лишь изменение потребности клеток нервной ткани с качественной точки зрения, не характеризуя функциональное и метаболическое состояние клеток с количественной стороны, что не позволяет сравнивать изменения функционального состояния при различных однонаправленных воздействиях, например для оценки действия нейротропных препаратов. Отсутствие количественных показателей в оценке изменений функционального и метаболического состояния нервной ткани снижает достоверность и точность определения функционального состояния нервной ткани.

Заявляемый способ направлен на достижение технического результата, состоящего в вычислении количественных показателей, а также повышении достоверности и точности определения функционального и метаболического состояния нервной ткани.

Поставленная задача достигается тем, что в известном способе определения функционального и метаболического состояния нервной ткани, включающем одновременную регистрацию ЭЭГ и УПП, по изменениям УПП и ЭЭГ при различных внешних воздействиях с использованием математической модели , где [W] - значения изменений амплитуды ЭЭГ, [P] - значение УПП, рассчитывают значение максимального уровня энергетического метаболизма [Em], коэффициента метаболической активности [r] и исходного уровня поляризации нервной ткани [C] и по численному значению вычисленных показателей количественно определяют изменение параметров функционального и метаболического состояния нервной ткани.

Математическая модель, описывающая взаимоотношения УПП и ЭЭГ, на основании которой возможно качественное и количественное определение функционального и метаболического состояния нервной ткани, может быть построена при предположении, что уровень энергетического метаболизма зависит от степени поляризации нервной ткани.

В простейшем случае изменение энергетического метаболизма (dE) при изменении степени поляризации ткани (dP), интегративным показателем которой является УПП, может быть выражено уравнением:

где, [k] - коэффициент, отражающий изменение уровня энергетического метаболизма на единицу изменения потенциала.

Максимальный уровень энергетического метаболизма всегда реально ограничен некоторым пределом (Em), который может быть связан как с запасами макроэргических соединений, так и с максимальной скоростью накопления и распада АТФ в биологической ткани. Отсюда:

где, [r] - коэффициент метаболической активности.

Решением уравнения (2) будет логистическая функция:

где [C] - коэффициент, характеризующий исходный сдвиг уровня поляризации нервной ткани [Р0]. При деполяризации интенсивность энергетического метаболизма будет первоначально быстро возрастать, а затем, при приближении к пределу [Em], начнет замедляться. Изменение функциональной активности биологической ткани [W], показателем которой может быть амплитуда ЭЭГ, будет зависеть от интенсивности энергетического метаболизма и может быть определена как производная от выражения (3):

Параметр [C] определяет исходный уровень функциональной и метаболической активности. Коэффициент метаболической активности [r] связан с максимальной скоростью метаболических реакций. Скорость синтеза и распада АТФ в клетках не может превышать определенной величины, что ограничивает скорость энергозависимых биохимических реакций определенным уровнем. Увеличение коэффициента метаболической активности [r] связывается с низкой скоростью синтеза и распада АТФ, что приводит к замедлению деполяризационных процессов. Третий параметр - максимальный уровень энергетического метаболизма [Em] - связан с максимально возможными потребностями нервной ткани в энергетических субстратах (АТФ). Уровень потребления субстратов (макроэргов) будет определяться скоростью метаболических процессов, общими энергетическими запасами ткани и количеством клеточных элементов биологической ткани. Параметр [Em] зависит от максимальной амплитуды оцениваемой биоэлектрической активности.

Сущность изобретения поясняется диаграммами, представленными на фиг.1-2. На фиг.1 показана колоколобразная функция, построенная на основании экспериментальных и теоретических вычислений по результатам регрессионного анализа амплитуды отдельных частотных диапазонов ЭЭГ и изменений УПП головного мозга с использованием математической модели (линии - теоретические кривые, точки - экспериментальные данные). На фиг.2 изображены экспериментальная и теоретическая кривые изменения суммарной мощности ЭЭГ во времени, теоретические изменения ЭЭГ вычислены по реальным данным изменения УПП.

Способ осуществляют следующим образом.

У объекта исследования неполяризующимися (хлорсеребряными) электродами с помощью усилителя постоянного тока проводят одновременную регистрацию уровня постоянного потенциала и суммарной медленной электрической активности в исследуемой нервной ткани при различных воздействиях (фотостимуляция, электростимуляция, гипоксия, гипервентиляция, ишемия и пр.). С использованием методов нелинейного регрессионного анализа и математической модели , где [W] - значение амплитуды ЭЭГ, [P] - значение УПП, рассчитывают значение максимального уровня энергетического метаболизма [Em], коэффициента метаболической активности [r] и исходного уровня поляризации нервной ткани [C]. Данные параметры позволяют количественно оценить изменения функциональной и метаболической активности нервной ткани, которые можно использовать для оценки эффектов различных физических или фармакологических внешних воздействий на нервную ткань.

Пример.

Для оценки функционального и метаболического состояния нервной ткани по предлагаемому способу было проведено исследование УПП и ЭЭГ при моделировании острой фокальной ишемии головного мозга. Предварительно за 2-3 дня до опыта беспородным белым крысам массой 150-200 г обоего пола (n=12) под нембуталовым наркозом под кости черепа над лобной корой правого и левого полушарий вживлялись хлорсеребряные электроды. Индифферентный хлорсеребряный электрод размещался в костях над лобными пазухами. Выводы электродов крепились к черепу быстрозатвердевающей пластмассой. После этого крыс оперировали под нембуталовым наркозом (40 мг/кг) по поводу моделирования ишемии. Регистрацию биоэлектрической активности головного мозга по униполярной методике начинали до введения наркоза и продолжали на протяжении всего эксперимента с помощью многоканального усилителя постоянного тока с входным сопротивлением 1 МОм и полосой пропускания частот 0-40 Гц. Данные оцифровывались (100 Гц) и для дальнейшей обработки вводились в компьютер. Определение спектра ритмов и его мощности проводили с помощью Фурье-преобразования. При этом выделяли пять диапазонов: дельта-1-(0,2-1 Гц), дельта-2-(1-4 Гц), тета-(4-8 Гц), альфа-(8-13 Гц) и бета-(13-30 Гц) ритм. УПП усредняли за периоды, соответствующие эпохам анализа ЭЭГ. Для нахождение параметров [r], [Em] и [C] математической модели использовали нелинейный регрессионный анализ. В качестве параметра, определяющего функциональную активность нервной ткани [W], использовали значение амплитуды различных частотных диапазонов ЭЭГ, в качестве показателя уровня поляризации нервной ткани [P] использовалось значение УПП. В таблице 1 показаны вычисленные параметры предложенной математической модели, полученные при анализе экспериментальных данных. Как видно из таблицы, параметры [r] и [C] являются относительно постоянными и не зависят от частоты ЭЭГ спектра, параметр [Em] пропорционален максимальной амплитуде ЭЭГ для данного частотного диапазона и уменьшается по экспоненциальному закону при увеличении частоты спектра.

На фиг.1 показаны графики зависимостей изменения различных частотных диапазонов ЭЭГ от степени поляризации нервной ткани, построенные на основании полученных параметров. Видно, что при электроотрицательном изменении УПП происходит первоначальное повышение электрической активности нервной ткани, при дальнейшем увеличении степени деполяризации происходит снижение электрической активности. При этом в начальный период отмечается большая активация быстрых ритмов ЭЭГ, в последующем амплитуда этих ритмов снижается быстрее, чем амплитуда медленных ритмов ЭЭГ. На фиг.2 показана экспериментальная и теоретическая кривые изменения суммарной мощности ЭЭГ во времени. Теоретические изменения ЭЭГ вычислены по реальным данным изменения УПП. Как видно, теоретическая модель очень хорошо описывает экспериментальные данные (R=0,84; P<0,01).

Результаты представленных экспериментов продемонстрировали высокие диагностические возможности предлагаемого способа. По отдельности ни ЭЭГ, ни УПП не позволяют провести тонкую дифференцировку функционального и метаболического состояния нервной ткани. Преимуществом является также относительная простота методики. Предлагаемый способ позволяет регистрировать и дифференцировать переход одного функционального и метаболического состояния в другое, тем самым повышает точность диагностики патологических и физиологических состояний, позволяет проводить адекватную лекарственную терапию патологических состояний, например, при ишемии, направленную на восстановление функционального и метаболического состояния нервной ткани, и определять прогноз и правильность лечения после той или иной терапии, а также изучать действие экстремальных факторов на организм человека.

Таким образом, предложенный способ дает возможность точно количественно определять функциональное и метаболическое состояние нервной ткани, адекватно дифференцировать физиологические и патологические состояния, регистрировать переход из одного функционального и метаболического состояния в другое, что повышает точность диагностики и высокую информативность способа и позволяет правильно определять тактику лечения в неврологии, психопатологии, нейрохирургии и нейрофизиологии, а также позволяет проводить разработку новых патогенетических нейропротекторных препаратов и изучать механизмы патологических и физиологических состояний в эксперименте.

Похожие патенты RU2562230C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИОНАЛЬНОГО И МЕТАБОЛИЧЕСКОГО СОСТОЯНИЯ НЕРВНОЙ ТКАНИ 2002
  • Мурик С.Э.
  • Шапкин А.Г.
RU2245673C2
СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИОНАЛЬНОГО И МЕТАБОЛИЧЕСКОГО СОСТОЯНИЯ НЕРВНОЙ ТКАНИ 2006
  • Мурик Сергей Эдуардович
RU2319441C2
СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ГОЛОВНОГО МОЗГА 2011
  • Шапкин Андрей Григорьевич
  • Шапкин Юрий Григорьевич
  • Таборов Михаил Витальевич
  • Суфианов Альберт Акрамович
  • Суфианова Галина Зиновьевна
  • Голобородько Марина Валентиновна
  • Берденникова Виталия Ванифатьевна
RU2565372C2
СПОСОБ ДИАГНОСТИКИ НАРУШЕНИЙ ФУНКЦИОНАЛЬНОЙ АКТИВНОСТИ МОЗГА У БОЛЬНЫХ С ОПУХОЛЯМИ ГОЛОВНОГО МОЗГА 2011
  • Воронина Ирина Александровна
RU2473302C1
СПОСОБ ПРОГНОЗА НЕЙРОИММУННЫХ НАРУШЕНИЙ ПРИ ИНСУЛИННЕЗАВИСИМОМ САХАРНОМ ДИАБЕТЕ 2011
  • Поскотинова Лилия Владимировна
  • Кривоногова Елена Вячеславовна
  • Дёмин Денис Борисович
  • Ставинская Ольга Александровна
  • Полетаева Анна Васильевна
RU2459577C1
СПОСОБ ДИАГНОСТИКИ ТОКСИЧЕСКОЙ ЭНЦЕФАЛОПАТИИ У МЕЛКИХ ЛАБОРАТОРНЫХ ЖИВОТНЫХ ПРИ ХРОНИЧЕСКОМ ВОЗДЕЙСТВИИ ПАРОВ МЕТАЛЛИЧЕСКОЙ РТУТИ 2010
  • Катаманова Елена Владимировна
  • Соседова Лариса Михайловна
  • Якимова Наталья Леонидовна
  • Константинова Татьяна Николаевна
RU2461893C2
СПОСОБ ОЦЕНКИ ЭФФЕКТИВНОСТИ КРАНИАЛЬНОЙ МАНУАЛЬНОЙ ТЕРАПИИ 2011
  • Чеченин Андрей Геннадьевич
  • Рогожникова Наталья Васильевна
  • Чеченина Ирина Петровна
RU2464929C1
Способ прогнозирования неблагоприятного течения эпилепсии у детей на первом году жизни 2022
  • Созаева Диана Измаиловна
  • Бережанская Софья Борисовна
  • Афонин Александр Алексеевич
  • Лебеденко Александр Анатольевич
  • Лукьянова Елена Анатольевна
  • Чурюкина Элла Витальевна
  • Логинова Ирина Георгиевна
  • Абдурагимова Марина Худавердиевна
  • Кравченко Лариса Вахтанговна
RU2787512C1
СПОСОБ ЛЕЧЕНИЯ ХРОНИЧЕСКОЙ ИШЕМИИ ГОЛОВНОГО МОЗГА 2011
  • Рогожникова Наталья Васильевна
  • Чеченин Андрей Геннадьевич
  • Чеченина Ирина Петровна
RU2457818C1
СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИОНАЛЬНОЙ АСИММЕТРИИ ПОЛУШАРИЙ ГОЛОВНОГО МОЗГА В РЕГУЛЯЦИИ ЭРГОТРОПНЫХ И ТРОФОТРОПНЫХ ФУНКЦИЙ 2014
  • Пестряев Владимир Анатольевич
  • Сафина Татьяна Владимировна
RU2559759C1

Иллюстрации к изобретению RU 2 562 230 C1

Реферат патента 2015 года СПОСОБ ОЦЕНКИ ФУНКЦИОНАЛЬНОГО И МЕТАБОЛИЧЕСКОГО СОСТОЯНИЯ НЕРВНОЙ ТКАНИ

Изобретение относится к медицине и предназначено для определения функционального и метаболического состояния нервной ткани в норме и при патологии. Одновременно регистрируют уровень постоянного потенциала (УПП) и электроэнцефалограмму (ЭЭГ) при физических и фармакологических воздействиях. По математической модели, учитывающей значения изменений амплитуды отдельно выбранного частотного диапазона ЭЭГ и показатель УПП, рассчитывают значение максимального уровня энергетического метаболизма, коэффициента метаболической активности и исходный уровнь поляризации нервной ткани. Полученные численные значения вычисленных показателей являются характеристикой параметров функционального и метаболического состояния нервной ткани. 2 ил., 1 табл., 1 пр.

Формула изобретения RU 2 562 230 C1

Способ определения функционального и метаболического состояния нервной ткани, включающий одновременную регистрацию электроэнцефалограммы (ЭЭГ) и уровня постоянного потенциала (УПП), отличающийся тем, что по изменениям УПП и ЭЭГ при физических и фармакологических воздействиях с использованием математической модели , где [W] - значения изменений амплитуды отдельно выбранного частотного диапазона ЭЭГ, [Р] - значение УПП, рассчитывают значение максимального уровня энергетического метаболизма [Em], коэффициента метаболической активности [r] и исходного уровня поляризации нервной ткани [С], численные значения вычисленных показателей являются характеристикой параметров функционального и метаболического состояния нервной ткани.

Документы, цитированные в отчете о поиске Патент 2015 года RU2562230C1

СПОСОБ ОПРЕДЕЛЕНИЯ ФУНКЦИОНАЛЬНОГО И МЕТАБОЛИЧЕСКОГО СОСТОЯНИЯ НЕРВНОЙ ТКАНИ 2002
  • Мурик С.Э.
  • Шапкин А.Г.
RU2245673C2
СПОСОБ ИССЛЕДОВАНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ГОЛОВНОГО МОЗГА, УСТРОЙСТВО ДЛЯ ИССЛЕДОВАНИЯ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ ГОЛОВНОГО МОЗГА И СПОСОБ ИЗМЕРЕНИЯ ПОДЭЛЕКТРОДНОГО СОПРОТИВЛЕНИЯ 2003
  • Захаров С.М.
  • Скоморохов А.А.
  • Смирнов Б.Е.
RU2252692C2
WO 2009064408 A1, 22.05.2009
БАРАШКОВА А.Б
Клинико-функциональная и метаболическая характеристика формирования и прогнозирования уровня здоровья подростков, автореф
дисс, 2004, с.3-19
MURIK S.E
et al
Simultaneous recording of EEG and direct current (DC) potential makes it possible to

RU 2 562 230 C1

Авторы

Хаташкеев Александр Ворошилович

Суфианов Альберт Акрамович

Суфианова Галина Зиновьевна

Таборов Михаил Витальевич

Шапкин Андрей Григорьевич

Шапкин Юрий Григорьевич

Берденникова Виталия Ванифатьевна

Даты

2015-09-10Публикация

2014-04-17Подача