ФОРМОВОЧНЫЕ СМЕСИ, СОДЕРЖАЩИЕ КАРБОНАТНЫЕ СОЛИ, И ИХ ПРИМЕНЕНИЕ Российский патент 2015 года по МПК B22C1/10 

Описание патента на изобретение RU2564656C2

ПЕРЕКРЕСТНЫЕ ССЫЛКИ НА РОДСТВЕННЫЕ ЗАЯВКИ

Данная заявка претендует на приоритет и эффект изобретения в соответствии с предварительной заявкой на патент США с регистрационным номером 61/286913, поданной 16 декабря 2009 г., содержание которой полностью включено в данное описание посредством ссылки.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Кварцевый песок (SiO2, кварц) широко используют в качестве заполнителя в металлолитейной промышленности для изготовления литейных форм и литейных стержней. Его используют как для получения сырой формовочной смеси (песка, связанного водой и глиной), так и для получения химически связанного песка. Используют различные неорганические и органические связующие, в том числе натрийсиликатные связующие, фенолуретановые, фурановые, эпоксиакриловые, фенольные связующие, отверждаемые сложными эфирами, фенольные связующие, отверждаемые кислотами, и др.

Связующие смешивают с песком и смесь уплотняют в модели, чтобы она приняла форму желаемой литейной формы или литейного стержня, затем связующее отверждается и связывает зерна песка друг с другом. Затем детали формы и стержня собирают с получением формы в сборке и заливают в форму металл, который заполняет ее внутренние полости, принимая форму желаемой отливки. Тепло от жидкого металла, в частности, в случае сплавов на основе железа с температурами плавления, превышающими 1100°C, начинает разлагать органическое связующее и нагревать песок. При нагревании кварцевого песка происходит его термическое расширение. Это расширение является относительно линейным до тех пор, пока температура не достигнет примерно 570°C, когда трансформируется кристаллическая структура зерен песка. Эта трансформация структуры сопровождается быстрым изотермическим расширением, за которым следует стадия термической усадки до примерно 980°C, когда происходит другое изменение кристаллической структуры с большим термическим расширением.

Считается, что эти быстрые изменения объема зерен песка вызывают механические напряжения в слоях песка, расположенных вблизи поверхности отливки, что может привести к растрескиванию поверхности формы или стержня, которая контактирует с горячим расплавленным жидким металлом, находящимся в форме. Расплавленный жидкий металл может затечь в эти трещины и сформировать просечки или заливины на поверхности отливки. Это нежелательно, и для удаления таких дефектов требуются время и труд. В критических прикладных задачах с мелкими внутренними проходами в формах просечки могут проходить поперек проходов и блокировать их. Примерами таких критических отливок являются блоки цилиндров и головки двигателей с водяными рубашками охлаждения, которые могут быть блокированы просечками, которые трудно обнаружить и еще труднее удалить.

Для получения «песчаных» литейных форм и стержней можно использовать также другие типы заполнителей, в том числе природный циркон, хромит, оливин и искусственную керамику, а также другие заполнители. Для них характерны меньшие скорости расширения без фазовых изменений и значительно сниженная тенденция к образованию дефектов типа просечек, однако они существенно дороже.

Для того чтобы уменьшить тенденцию к образованию просечек, вместе с кварцевым песком были использованы добавки к формовочным смесям. Эти добавки к формовочным смесям обычно можно разделить на три основные категории в зависимости от механизма их действия.

Первая категория состоит из «заполнителей с низким термическим расширением»; примером является смесь кварцевого и цирконового песка в соотношении 90:10, которая обладает меньшим термическим расширением, чем чистый кварцевый песок. Кроме природных заполнителей, можно использовать искусственные заполнители, такие как керамические (муллитовые) шарики, «микросферы» из силиката алюминия или плавленый кварц.

Вторая категория состоит из «органических демпфирующих материалов», таких как древесная мука, декстрин и крахмал. При смешивании с кварцевым песком они занимают определенный объем между зернами песка. Поэтому, когда расплавленный металл заливают в форму, тепло от расплавленного металла быстро выжигает дополнительный органический материал. Объем, который ранее был занят органическим материалом, затем может служить «амортизатором» или пространством для расширения песка, что снижает развитие напряжений в песке.

Третья категория добавок к формовочной смеси состоит из «флюсов», которые реагируют с поверхностью зерен песка и химически изменяют поверхностный слой песка и соответствующие характеристики расширения песка. Примерами таких флюсов являются оксиды железа - гематит (Fe2O3) и магнетит (Fe3O4), которые издавна используют в качестве добавок к формовочным смесям. Другими добавками к формовочным смесям типа флюсов являются материалы, содержащие оксид титана (TiO2) и оксид лития (Li2O), например сподумен. Также было показано, что использование комбинации нескольких различных добавок типа флюсов может обеспечить полезный эффект. Это относится, в частности, к использованию гематита совместно с другими добавками.

Существующие категории добавок к формовочным смесям могут снизить образование просечек в отливках, но все три категории добавок к формовочным смесям обладают определенными важными недостатками. Агрегаты с низким термическим расширением обычно являются более дорогими, чем кварцевый песок, и их необходимо использовать в относительно больших количествах (более 10% от массы песка). Органические демпфирующие материалы имеют тенденцию увеличивать общее количество газа, выделяемого литейной формой или стержнем при воздействии жидкого металла, и могут значительно снизить прочность формы/стержня, если их используют в количестве, превышающем примерно 1 процент. Добавки к формовочным смесям типа флюсов в настоящее время являются наиболее широко используемыми добавками, однако они также имеют определенные недостатки. Например, оксиды железа при использовании в количестве, превышающем примерно 2 масс.% от массы песка, могут приводить к повышенной проницаемости металла и снижать прочность формы/стержня при использовании в больших количествах. Сподумены, содержащие литий, являются дорогими, и обычно их используют в больших количествах, например в количестве от 4 до 8 масс.% от массы песка.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В заявке описана формовочная смесь, содержащая заполнитель и определенные карбонатные соли. Карбонатные соли можно использовать в количествах менее 4,0 масс.% от массы заполнителя и даже в количествах 1,0 масс.% и менее, для эффективного снижения образования просечек на металлической отливке, изготовленной с использованием формовочной смеси. Также описано применение формовочной смеси для изготовления литейных форм с использованием способов warm-box (ворм-бокс), hot-box (хот-бокс), no-bake (ноу-бэйк) и cold-box (колд-бокс), применение этих литейных форм для изготовления металлических отливок и металлические отливки, изготовленные таким способом. При использовании формовочной смеси согласно настоящему изобретению в металлических отливках, изготовленных с использованием литейных форм для литья металлических деталей, снижается или устраняется образование просечек.

Известно, что карбонатные соли, как чистые, так и входящие в состав природных минералов, например доломита, могут сокращать время обработки песчаных смесей, используемых в cold-box способе для изготовления литейных форм, и снижать химическую активность кислотных катализаторов, используемых для отверждения литейных форм в warm-box, hot-box и no-bake способах. В связи с этим желательно удалять карбонатные соли из формовочных смесей или минимизировать их содержание в формовочных смесях. Несмотря на это препятствие для использования карбонатных солей в формовочных смесях, оценка отливок показала не только то, что добавление карбонатных солей уменьшает образование просечек, но и то, что сопоставимое уменьшение просечек обеспечивается при использовании меньших количеств карбонатных солей (по сравнению с количествами известных добавок к формовочным смесям).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Карбонатными солями, используемыми в качестве добавок к формовочной смеси, являются такие карбонаты, как карбонат натрия, карбонат калия, карбонат кальция, карбонат магния и их смеси. Можно использовать чистые карбонатные соли и/или природные минералы, содержащие карбонатные соли. Примером природного минерала, содержащего карбонатные соли, является доломит. Доломит обладает преимуществами в качестве источника карбонатных солей благодаря его доступности и низкой цене.

Количество карбонатной соли, используемое в формовочной смеси, - это количество, эффективно снижающее или устраняющее образование просечек в металлических отливках, изготовленных с использованием литейных форм (т.е. форм и стержней), используемых для литья металлических деталей. Эффективное количество карбонатной соли обычно составляет от 0,25 масс.% до 5,0 масс.% от массы заполнителя в формовочной смеси, предпочтительно - от 0,5 масс.% до 3,0 масс.% от массы заполнителя в формовочной смеси и наиболее предпочтительно - от 0,75 масс.% до 2,0 масс.% от массы заполнителя в формовочной смеси.

Кроме карбонатных солей формовочная смесь может также содержать известные добавки для формовочных смесей, такие как красный оксид железа, черный оксид железа и литийсодержащие соединения. Особо предпочтительно использовать совместно с карбонатной солью красный оксид железа. Если с карбонатной солью используют красный оксид железа, то его обычно используют в массовом отношении карбонатной соли к красному оксиду железа в диапазоне от 1:1 до 4:1, предпочтительно - от 1:1 до 2:1.

Формовочная смесь также может содержать связующее для формовочных смесей. Эти связующие для формовочных смесей хорошо известны в данной области техники. Можно использовать любое неорганическое или органическое связующее для способов warm-box, hot-box, no-bake или cold-box, если оно будет в достаточной степени фиксировать литейную форму, а в случае органических связующих - если оно будет полимеризоваться в присутствии катализатора отверждения. Примерами таких органических связующих являются, среди прочих, фенольные смолы, фенолуретановые связующие, фурановые связующие, щелочные фенолрезольные связующие и эпоксиакриловые связующие. Фенолуретановые связующие описаны в патентах США №№3485497 и 3409579, содержание которых полностью включено в данную заявку посредством ссылки. В основе этих связующих лежит двухкомпонентная система, одна часть которой является компонентом фенольной смолы, а вторая часть - полиизоцианатным компонентом. Эпоксиакриловые связующие, отверждаемые диоксидом серы в присутствии окислителя, описаны в патенте США №4526219, содержание которого также полностью включено в данную заявку посредством ссылки.

Необходимое количество связующего является эффективным количеством, обеспечивающим поддержание формы и эффективное отверждение, то есть количеством, которое позволит получить литейную форму, с которой можно будет обращаться после отверждения или которая после отверждения будет самоподдерживающейся. Эффективное количество связующего обычно превышает примерно 0,1 масс.% от массы заполнителя формовочной смеси. Предпочтительно количество связующего лежит в диапазоне от примерно 0,5 масс.% до примерно 5 масс.%, более предпочтительно - от примерно 0,5 до примерно 2 масс.%.

Отверждение формовочной смеси в случае no-bake способа происходит после смешивания жидкого катализатора отверждения с формовочной смесью (альтернативно - после первоначального смешивания жидкого катализатора отверждения с формовочной смесью), формования формовочной смеси, содержащей катализатор, и отверждения сформованной формовочной смеси (обычно при температуре окружающей среды без использования тепла). Warm-box и hot-box способы сходны с no-bake способом, за исключением используемого оборудования и/или того, что литейную форму нагревают для ускорения отверждения. Предпочтительным жидким катализатором отверждения для no-bake способа является третичный амин, описанный в патенте США №3485797, содержание которого полностью включено в данную заявку посредством ссылки. Конкретными примерами таких жидких катализаторов отверждения являются 4-алкилпиридины, алкильная группа которых содержит от одного до четырех атомов углерода, изохинолин, арилпиридины, например фенилпиридин, пиридин, акридин, 2-метоксипиридин, пиридазин, 3-хлорпиридин, хинолин, N-метилимидазол, N-этилимидазол, 4,4'-дипиридин, 4-фенилпропилпиридин, 1-метилбензимидазол и 1,4-тиазин. Если фурановое связующее используют в warm-box, hot-box или no-bake способах, то типичным используемым катализатором является неорганическая или органическая кислота, например сильные кислоты, такие как толуолсульфокислота, ксилолсульфокислота, бензолсульфокислота, HCl и H2SO4. Также можно использовать слабые кислоты, например фосфорную кислоту.

Отверждение литейной формы в cold-box способе происходит при вдувании или набивке формовочной смеси в форму и контакте литейной формы с парообразным или газообразным катализатором. Можно использовать различные пары или смеси паров и газов или газы, например третичные амины, диоксид углерода, метилформиат и диоксид серы, в зависимости от выбранного химического связующего. Специалист в данной области техники сможет определить, какой газообразный отверждающий агент является подходящим для используемого связующего. Например, смесь парообразных/газообразных аминов используют с фенолуретановыми смолами. Диоксид серы (совместно с окислителем) используют с эпоксиакриловой смолой. См. патент США №4526219, содержание которого включено в данную заявку посредством ссылки. Диоксид углерода (см. патент США №4985489, содержание которого включено в данную заявку посредством ссылки) или сложные метиловые эфиры (см. патент США №4750716, содержание которого включено в данную заявку посредством ссылки) используют с щелочными фенолрезольными смолами. Диоксид углерода также используют со связующими на основе силикатов. См. патент США №4391642, содержание которого включено в данную заявку посредством ссылки

Связующим предпочтительно является фенолуретановое cold-box связующее, отверждаемое посредством пропускания газообразного третичного амина, например триэтиламина, через сформованную формовочную смесь способом, описанным в патенте США №3409579, или эпоксиакриловое связующее, отверждаемое диоксидом серы в присутствии окислителя, как описано в патенте США №4526219.

Специалисту в данной области техники будет очевидно, что к формовочной смеси могут быть добавлены другие добавки, например разделительные композиции, растворители, средства, увеличивающие время обработки, силиконовые соединения и т.п.

ОПИСАНИЕ ПРИМЕРОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

В Примере А (сравнительный пример) и в Примерах 1-3 литейные стержни для испытаний (цилиндрические стержни диаметром 2” и высотой 2”) были изготовлены с использованием warm-box процесса посредством смешивания кварцевого песка Badger 5574 с фурановым связующим CHEM-REZ® (коммерчески доступным в компании Ashland Inc.) в количестве, равном 1,25% от массы песка, катализатором CHEM-REZ FC521 (коммерчески доступным в компании Ashland Inc.) в количестве, равном 20% от массы связующего, и добавкой для формовочной смеси, вид и количество которой (в процентах от массы песка) указаны в Таблице 1, и вдувания смеси в стержневой ящик, температуру которого поддерживали на уровне примерно 235°C.

В Примере В (сравнительный пример) и в Примерах 4-5 литейные стержни для испытаний были изготовлены с использованием cold-box процесса посредством смешивания кварцевого песка Wedron 540 с фенолуретановым связующим ISOCURE® TKW 10/20 (двухкомпонентное фенолуретановое связующее, коммерчески доступное в компании Ashland Inc., в котором соотношение Части I к Части II равно 1:1) в количестве, равном 1,25% от массы песка, катализатором CHEM-REZ FC521 (коммерчески доступным в компании Ashland Inc.) в количестве, равном 1% и указанном в Таблице 1, вдувания смеси в стержневой ящик с цилиндрическими полостями диаметром 2” и высотой 2” и отверждения стержней с использованием катализатора триэтилалюминия (TEA).

Характеристики образования просечек на стержнях для испытаний были измерены после проведения пробного литья для испытания на «пенетрацию», для которого стержни для испытаний были вклеены в литейную форму в сборке. Затем в литейную форму в сборке, содержавшую стержни для испытаний, залили расплавленный серый литейный чугун Класса 30, имевший температуру около 1450°C. Результаты испытания на пенетрацию в отношении образования просечек и механической пенетрации описаны авторами Tordoff and Tenaglia в AFS Transactions, стр.149-158 (84-е ежегодное совещание AFS, Сент-Луис, Миссури, 21-25 апреля 1980 г.). Дефекты поверхности определяли посредством визуального наблюдения, а оценка отливок была основана на опыте исследователей и фотографиях испытательных отливок.

Отливку охлаждали, очищали посредством пескоструйной обработки и внутренние поверхности полостей, образованных стержнями, оценивали на образование просечек, сравнивали друг с другом и оценивали по шкале от 1 до 5, где 5 обозначает наиболее выраженное образование просечек, а 1 обозначает отсутствие просечек. Результаты представлены в Таблице 1, приведенной ниже.

Таблица 1 Характеристики образования просечек на стержнях для испытаний Пример Добавка Общее количество добавки, препятствующей образованию просечек (в % от массы песка) Образование просечек (оценка) A (warm-box) Нет Нет 4,0 1 (warm-box) Смесь карбоната кальция и карбоната магния (доломит) В общей сложности 1 процент1 1,5 2 (warm-box) Смесь карбоната кальция и карбоната магния (доломит) В общей сложности 1 процент2 1,0 3 (warm-box) Смесь карбоната кальция и карбоната магния (доломит) В общей сложности 2 процента3 1,0 В (cold-box) Нет Нет 3,0 4 (cold-box) Смесь карбоната кальция и карбоната магния (доломит) + сульфат кальция (гипс) (50/50) В общей сложности 1 процент2 1,0 5 (cold-box) Смесь карбоната кальция и карбоната магния (доломит) + сульфат кальция (гипс) (50/50) В общей сложности 2 процента2 1,0 1 - без добавления оксида железа
2 - для контроля пенетрации также добавлено 0,5 процента оксида железа
3 - для контроля пенетрации также добавлен 1 процент оксида железа

Данные Таблицы 1 четко показывают, что стержни для испытаний, изготовленные из формовочной смеси, содержащей карбонатную соль, снижают образование просечек в исследуемой отливке даже в концентрации, равной 1 масс.% от массы песка.

В описании и примерах осуществления настоящего изобретения возможны различные комбинации, модификации и изменения параметров, которые входят в объем формулы изобретения, так что формулу изобретения следует толковать как включающую альтернативные варианты его осуществления.

Похожие патенты RU2564656C2

название год авторы номер документа
ФОРМОВОЧНЫЕ СМЕСИ, СОДЕРЖАЩИЕ СОЛЬ ОРГАНИЧЕСКОЙ КИСЛОТЫ, И ИХ ПРИМЕНЕНИЕ 2010
  • Шоумен, Ральф, Е.
  • Хармон, Шон, Б.
RU2567932C2
ФОРМОВОЧНЫЕ СМЕСИ, СОДЕРЖАЩИЕ СУЛЬФАТНЫЕ И/ИЛИ НИТРАТНЫЕ СОЛИ, И ИХ ПРИМЕНЕНИЕ 2010
  • Шоумен,Ральф,Е.
  • Хармон,Шон,Б.
RU2566108C2
КОМПОЗИЦИЯ ПОКРЫТИЯ ДЛЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ, ПРЕДУПРЕЖДАЮЩАЯ ОБРАЗОВАНИЕ ДЕФЕКТОВ ОТ РЕАКЦИОННЫХ ГАЗОВ 2008
  • Штётцель Райнхард
  • Айзинг Клеменс
  • Смарцох Карл
RU2493933C2
ДОБАВКА, ПРЕДОТВРАЩАЮЩАЯ ВОЗНИКНОВЕНИЕ УЖИМИН, ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЕЙНЫХ ФОРМ И СТЕРЖНЕЙ 2010
  • Прат Уррейстиета, Сантьяго
  • Менсисабаль Кастельянос, Марко, Антонио
  • Пэртольяно Абаскаль, Мария, Хосе
  • Рейна Риверо, Хесус
RU2570680C2
ВСТАВКА, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ УКАЗАННОЙ ВСТАВКИ 2002
  • Прат Уррейстьета Хайме
RU2299781C2
СВЯЗУЮЩАЯ КОМПОЗИЦИЯ, СОДЕРЖАЩАЯ КОНДЕНСИРОВАННЫЙ ТАНИН И ФУРФУРИЛОВЫЙ СПИРТ И ЕЕ ПРИМЕНЕНИЕ 2005
  • Станклифф Марк Р.
  • Крокер Йорг
RU2353597C2
КОМПОЗИЦИИ, СОДЕРЖАЩИЕ ОПРЕДЕЛЕННЫЕ МЕТАЛЛОЦЕНЫ, И ИХ ПРИМЕНЕНИЕ 2009
  • Ауфдерхайде Роналд С.
  • Браун Майкл Т.
  • Крокер Йорг
  • Ван Сяньпин
RU2512517C2
ФОРМОВОЧНЫЙ ПЕСОК ДЛЯ ИЗГОТОВЛЕНИЯ ЛИТЕЙНЫХ СТРЕЖНЕЙ И ФОРМ 1997
  • Прат Уррейстьета Хайме
RU2202437C2
СПОСОБ ЛИТЬЯ ОТЛИВОК 2015
  • Арнольд, Клаус
  • Роговски, Дирк
  • Шмидт, Юрген
  • Зюссманн, Рольф
RU2645824C1
СПОСОБ ПОЛУЧЕНИЯ ЭРОЗИОННОСТОЙКИХ ЛИТЕЙНЫХ ФОРМ С ЭПОКСИАКРИЛАТНЫМ СВЯЗУЮЩИМ ПО ХОЛОДНЫМ ЯЩИКАМ 2007
  • Ван Сяньпин
  • Шрайвер Х. Рэндалл
  • Крокер Йорг
RU2401716C1

Реферат патента 2015 года ФОРМОВОЧНЫЕ СМЕСИ, СОДЕРЖАЩИЕ КАРБОНАТНЫЕ СОЛИ, И ИХ ПРИМЕНЕНИЕ

Изобретение относится к литейному производству. Смесь содержит заполнитель формовочной смеси и карбонатную соль в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси. Обеспечивается снижение образования просечек в металлической отливке. 4 н. и 15 з.п. ф-лы, 1 табл., 7 пр.

Формула изобретения RU 2 564 656 C2

1. Формовочная смесь, содержащая:
(а) заполнитель формовочной смеси, и
(б) карбонатную соль в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси для снижения образования просечек в металлической отливке, изготовленной с использованием формовочной смеси.

2. Формовочная смесь по п. 1, отличающаяся тем, что она дополнительно содержит оксид железа, выбранный из группы, состоящей из красного оксида железа, черного оксида железа и их смесей.

3. Формовочная смесь по п. 2, отличающаяся тем, что оксидом железа является красный оксид железа.

4. Формовочная смесь по п. 3, отличающаяся тем, что заполнитель для формовочной смеси содержит кварцевый песок.

5. Формовочная смесь по п. 4, отличающаяся тем, что карбонатная соль выбрана из группы, состоящей из карбоната кальция, карбоната магния и их смесей.

6. Формовочная смесь по п. 5, отличающаяся тем, что в качестве источника карбоната кальция и/или карбоната магния она содержит доломит.

7. Формовочная смесь по п. 4, отличающаяся тем, что она дополнительно содержит гипс.

8. Формовочная смесь по пп. 5, 6 или 7, отличающаяся тем, что массовое соотношение карбонатной соли и красного оксида железа лежит в диапазоне от 1:1 до 4:1.

9. Формовочная смесь по п. 8, отличающаяся тем, что массовое соотношение карбонатной соли и красного оксида железа лежит в диапазоне от 1:1 до 2:1.

10. Формовочная смесь по п. 9, отличающаяся тем, что она содержит органическое связующее.

11. Формовочная смесь по п. 10, отличающаяся тем, что связующим является фенолуретановое связующее или эпоксиакрилатное связующее.

12. Формовочная смесь по п. 11, отличающаяся тем, что она содержит жидкий катализатор.

13. Формовочная смесь по п. 11, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 4,0 мас.% от массы заполнителя для формовочной смеси.

14. Формовочная смесь по п. 12, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 4,0 мас.% от массы заполнителя для формовочной смеси.

15. Формовочная смесь по п. 11, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 2,5 мас.% от массы заполнителя для формовочной смеси.

16. Формовочная смесь по п. 12, отличающаяся тем, что количество соли в формовочной смеси лежит в диапазоне от 0,5 мас.% до 2,5 мас.% от массы заполнителя для формовочной смеси.

17. Способ изготовления литейной формы, включающий:
(а) помещение формовочной смеси по п. 1 в модель для получения литейной формы,
(б) применение одного из следующих трех этапов обработки:
(б.1) обеспечение контакта литейной формы, полученной на стадии (а), с газообразным или парообразным катализатором отверждения, способным отвердить форму, или
(б.2) обеспечение контакта литейной формы, полученной на стадии (а), с жидким катализатором отверждения, способным отвердить форму, или
(б.3) нагревание литейной формы, полученной на стадии (а), до температуры в диапазоне от 150°C до 260°C,
(в) отверждение литейной формы, полученной на стадии (б), до тех пор, пока эта форма не станет пригодной для обращения, и
(г) извлечение, по меньшей мере, частично отвержденной литейной формы из модели.

18. Способ литья металлических деталей, включающий:
(а) введение отвержденной литейной формы, изготовленной способом по п. 17, в литейную форму в сборе,
(б) заливку металла, находящегося в жидком состоянии, в форму в сборе,
(в) охлаждение и отверждение металла, и
(г) отделение отлитой металлической детали от формы в сборе.

19. Применение карбонатной соли в количестве от 0,25 мас.% до 5,0 мас.% от массы заполнителя в формовочной смеси, содержащей заполнитель формовочной смеси для снижения образования просечек в металлической отливке, изготовленной с использованием указанной формовочной смеси.

Документы, цитированные в отчете о поиске Патент 2015 года RU2564656C2

US 5646199 A, 08.07.1997
US 20050155741 A1, 21.07.2005
US 20030155098 A1, 21.08.2003
Связующее для изготовления литейных стержней и форм теплового отверждения 1990
  • Иткис Зиновий Яковлевич
  • Николайзин Владимир Викторович
  • Гималетдинов Шафибулла Леронович
  • Шахринов Николай Владимирович
  • Зеленский Виктор Николаевич
  • Перепечко Николай Федорович
  • Ильиных Александр Викторович
  • Барахвостова Татьяна Анатольевна
SU1748916A1

RU 2 564 656 C2

Авторы

Шоумен,Ральф,Е.

Хармон,Шон,Б.

Даты

2015-10-10Публикация

2010-10-27Подача