СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ СИЛЬВИНИТОВЫХ РУД Российский патент 2015 года по МПК C01D3/08 B01F1/00 G05D27/00 

Описание патента на изобретение RU2564834C1

Изобретение относится к технике управления процессом растворения сильвинитовых руд и может быть использовано в производстве хлористого калия методом растворения-кристаллизации.

Известен способ автоматического управления процессами выщелачивания хлористого калия из калийного сырья путем изменения расхода входных потоков - см. АС СССР №1060569, кл. С01D 3/08, С05D 27/00, публ. 15.12.83, Бюл. №46. Способ отличается высокой сложностью, так как его реализация невозможна без осуществления полного химического анализа входных потоков. Известен способ управления процессом растворения солевых руд путем стабилизации расхода исходного раствора и регулирования подачи руды в зависимости от содержания полезного компонента во входных потоках и температуры готового раствора - см. А.С. СССР №1256776, кл. B01F 1/00, С05D 27/00, публ. 15.09.86, Бюл. №34.

Способ также отличается сложностью, так как управление процессом растворения за счет стабилизации расхода исходного раствора практически затруднено вследствие изменения этого потока из-за вывода из процесса глинисто-солевого шлама с различным значением Т:Ж, изменения водного баланса на ВКУ в связи с необходимостью получения целевого продукта заданного состава, промывки оборудования с подачей промвод в исходный раствор и др. факторов. Известен способ управления процессом растворения сильвинитовых руд путем регулирования подачи руды в зависимости от содержания полезного компонента во входных потоках, температуры готового раствора, плотности, температуры и расхода растворяющего раствора, содержания хлористого калия в готовом растворе после его осветления и его расхода для корректировки расхода основного потока руды по зависимости:

, где

±ΔGруды - расход руды, корректирующий ее основной поток, т/ч;

Gгот. р-р - расход осветленного готового раствора, т/ч;

CKCl гот.р-р - содержание хлористого калия в осветленном готовом растворе, %;

CKCl руды - содержание хлористого калия в сильвинитовой руде, %;

αKCl р. р-р - степень насыщения осветленного раствора по хлористому калию.

См. патент РФ №2398620, кл. B01F 1/00, С01D 3/08, С05D 27/00, публ. 10.09.2010, Бюл. №25.

Предлагаемый способ отличается сложностью, так как не предусматривает управление расходом основного потока сильвинитовой руды и может быть осуществлен только в комбинации с другими способами управления. Известен способ управления процессом растворения сильвинитовых руд, включающий регулирование подачи руды в зависимости от содержания полезного компонента во входных потоках, измерение температуры готового раствора, определение содержания хлористого натрия в растворе расчетным путем, измерение плотности, температуры и расхода растворяющего раствора, определение в нем содержания хлористого натрия по содержанию полезного компонента, плотности и температуре, расчет подачи руды по зависимости:

где

Qруда - расход руды, т/ч;

CKCl руда - массовая доля KCl в руде;

Тгот. р.р - температура готового раствора, °C;

CKCl р. р-р - массовая доля KCl в растворяющем растворе;

ρр. р.р - плотность растворяющего раствора, т/м3;

Тр. р.р - температура растворяющего раствора, °C;

Qp.p-p - расход растворяющего раствора, т/ч;

Bi - постоянные коэффициенты, i=0, 1, 2, 3, 4, 5, 13, 34;

CNaCl р-р - массовая доля NaCl в растворяющем растворе;

Ai - эмпирические коэффициенты, i=0, 1, 2, 3.

Вычисленные значения подают в качестве задания в систему управления - прототип - см. Патент РФ №2352385, кл. B01F 1/00, С01D 3/08, С05D 27/00, публ. 20.04.2009, Бюл. №11.

Известный способ отличается сложностью, так как предусматривает использование постоянных коэффициентов, которые выводятся методом регрессионного анализа путем варьирования независимых переменных в заданном интервале варьирования. При изменении интервала варьирования независимых переменных меняются все постоянные коэффициенты и требуется заново рассчитывать их значение, перенастраивать контроллер и локальные средства управления на новый алгоритм управления.

Задачей предлагаемого изобретения является упрощение управления процессом растворения сильвинитовых руд, которое достигается за счет расчета расхода руды, основанного на аналитических зависимостях диаграммы растворимости системы: KCl-NaCl-MgCl2-H2O, использование которых не требует определения коэффициентов регрессии и позволяет использовать предлагаемый способ с применением средств контроля и управления на любых галургических фабриках.

Поставленная задача достигается тем, что в отличие от известного способа управления процессом растворения сильвинитовых руд, включающего регулирование подачи руды в зависимости от содержания полезного компонента во входных потоках, измерение температуры во входных потоках, измерение температуры готового раствора, измерение плотности и расхода растворяющего раствора, определение в нем содержания хлористого натрия по содержанию полезного компонента, плотности и температуре, расчет подачи руды по предлагаемому способу дополнительно измеряют содержание хлористого магния в готовом растворе, содержание хлористого калия в твердой фазе галитового отвала, его расход и расход воды, поступающий на растворение, по зависимости

, где

CKCl гот.р-р - концентрация насыщения готового раствора по хлористому калию, при степени насыщения его по хлористому калию, αKCl=1, и по хлористому натрию, αNaCl=1, т/1000 т H2O;

- концентрация хлористого магния в готовом растворе, т/1000 т H2O;

Тгот.р-р - температура готового раствора, °С;

определяют концентрацию насыщения по хлористому калию в готовом растворе при αKCl=1 и αNaCl=1;

по расходу растворяющего раствора, замеренному или рассчитанному, содержанию в нем воды и замеренному расходу воды, поступающей на растворение, рассчитывают общий расход воды, идущий на растворение, по зависимости

где

Gр.р-р - расход растворяющего раствора, т/ч;

- содержание воды в растворяющем растворе, %;

- расход воды, поступающей на растворение, включая воду на промывку, пар на подогрев суспензии в растворителях, воду на промывку отвала, влагу в руде, т/ч,

по расходу растворяющего раствора и замеренному содержанию в нем калия определяют расход хлористого калия, поступающего на растворение, GKClр.р-р:

, где

СKClр.р-р - содержание KCl в растворяющем растворе, %;

по полученным значениям , СKClгот.р-р и GKClр.р-р определяют расход руды - Gруды, необходимый для получения готового раствора со степенью насыщения по KCl-αKCl=1 с учетом замеренной концентрации KCl в руде по зависимости:

, где

СKClруда - содержание KCl в руде, %;

по замеренному расходу галитового отвала и содержанию в твердой фазе отвала хлористого калия определяют степень извлечения при растворении KCl из руды в готовый раствор - βKClгот.р-р по зависимости

где

Go - расход галитового отвала, т/ч;

CKClо.тв. - содержание KCl в твердой фазе галитового отвала, %;

при этом степень извлечения является поправочным повышающим коэффициентом к расходу руды

и вычисленное значение расхода руды подают в качестве задания в систему управления весовым дозатором руды, подаваемой на растворение.

Содержание воды в растворяющем растворе замеряют с помощью автоматического титратора с реактивом Фишера либо рассчитывают по содержанию хлористого калия, хлористого магния и расчетному значению хлористого натрия в растворяющем растворе, полученному с применением эмпирических коэффициентов для определения хлористого натрия, по зависимости

где

- содержание хлористого натрия в растворяющем растворе, %;

- содержание хлористого магния в растворяющем растворе, %.

Сущность способа как технического решения заключается в следующем. В отличие от известного способа управления процессом растворения сильвинитовых руд, включающего регулирование подачи руды в зависимости от содержания полезного компонента во входных потоках, измерение температуры во входных потоках, измерение температуры готового раствора, измерение плотности и расхода растворяющего раствора, определение в нем содержания хлористого натрия по содержанию полезного компонента, плотности и температуре, расчет подачи руды по предлагаемому способу дополнительно измеряют содержание хлористого магния в готовом растворе, содержание хлористого калия в твердой фазе галитового отвала, его расход и расход воды, поступающий на растворение, по зависимости

, где

CKClгот.р-р - концентрация насыщения готового раствора по хлористому калию, при степени насыщения его по хлористому калию, αKCl=1, и по хлористому натрию, αNaCl=1, т/1000 т H2O;

- концентрация хлористого магния в готовом растворе, т/1000 т H2O;

Тгот.р-р - температура готового раствора, °C;

определяют концентрацию насыщения по хлористому калию в готовом растворе при αKCl=1 и αNaCl=1.

Уравнение для CKClгот.р-р выведено на основании диаграммы растворимости системы: KCl-NaCl-MgCl2-H2O в известном способе управления процессом получения хлористого калия для кристаллизации целевого продукта на установке вакуум-кристаллизации - см. патент РФ №2399587, кл. С01D 3/04, С05D 27/00, публ. 20.09.2010, Бюл. №26. Как показала практика, это уравнение справедливо для управления процессом растворения сильвинитовых руд.

По расходу растворяющего раствора, замеренному или рассчитанному, содержанию в нем воды и замеренному расходу воды, поступающей на растворение, рассчитывают общий расход воды, идущий на растворение, по зависимости

где

Gр.р.р - расход растворяющего раствора, т/ч;

- содержание воды в растворяющем растворе, %;

- расход воды, поступающей на растворение, включая воду на промывку, пар на подогрев суспензии в растворителях, воду на промывку отвала, влагу в руде, т/ч.

Воду на промывку отвала, ковшей элеваторов растворителей, пар в зимний период для подогрева суспензии в первом растворителе замеряют расходомерами и учитывают, так как она поступает непосредственно в растворители вместе с растворяющим раствором. Влагу руды, поступающей на растворение, определяют влагомером или аналитически.

На существующих галургических фабриках растворяющий раствор формируется в резервных емкостях большого размера, куда поступают раствор с установки вакуум-кристаллизации после выделения из него целевого продукта - хлористого калия, промывные воды и при необходимости рассолы. Уровень растворяющего раствора в резервных емкостях при соблюдении норм технологического режима колеблется вокруг заданного значения, но при нарушении водного баланса процесса или при производстве 98% KCl уровень повышается выше максимального и избыточный раствор сбрасывается, а при локальных разгрузках из сгустителей глинисто-солевого шлама с переменным отношением жидкого к твердому (Ж:Т) уровень снижается, и при его минимальном значении в резервные емкости добавляют рассол. В результате расход растворяющего раствора и его состав могут колебаться, а следовательно, необходимо для управления процессом растворения с получением готового раствора заданного состава менять расход руды с учетом содержания в ней хлористого калия. По замеренному расходу растворяющего раствора и содержанию в нем калия определяют расход хлористого калия, поступающего на растворение, GKClр.р-р:

, где

CKClр.р-р - содержание KCl в растворяющем растворе, %.

По полученным значениям , CKClгот.р-р и GKClр.р-р определяют расход руды - Gруды, необходимый для получения готового раствора со степенью насыщения по KCl-αKCl=1 с учетом замеренной концентрации KCl в руде по зависимости

, где

CKClруда - содержание KCl в руде, %.

По замеренному расходу галитового отвала и содержанию в твердой фазе отвала хлористого калия определяют степень извлечения при растворении KCl из руды в готовый раствор - βKClгот.р-р по зависимости

где

G0 - расход галитового отвала, т/ч;

CKClо.тв. - содержание KCl в твердой фазе галитового отвала, %, определяется аналитически 1-2 раза в сутки.

Опыт работы химфабрик показал, что гранулометрический состав руды, поступающей на растворение, меняется незначительно при установившемся режиме рудоподготовки, а следовательно, потери KCl с крупными фракциями галитового отвала для конкретных растворителей и нагрузки на них по твердой и жидкой фазам являются постоянной величиной.

При этом степень извлечения является поправочным повышающим коэффициентом к расходу руды

.

Как показала практика, руда, поступающая на растворение, имеет полидисперсный состав и по нормативной документации должна содержать частицы более 5 мм шах 12%, менее 1 мм - max 50% и от 5 до 1 мм - остальные. Хлористый калий из частиц сильвинитовой руды менее 5 мм переходит в жидкую фазу практически полностью за 20 минут, а из более крупных зерен руды растворяется частично и попадает в галитовый отвал. Поэтому для получения готового насыщенного раствора расход руды должен быть увеличен на величину потерь KCl с отвалом.

По предлагаемому способу содержание воды в растворяющем растворе замеряют с помощью автоматического титратора с реактивом Фишера с автоматическим отбором проб либо рассчитывают по содержанию хлористого калия, хлористого магния и расчетному значению хлористого натрия в растворяющем растворе, полученному с применением эмпирических коэффициентов для определения хлористого натрия, по зависимости

где

- содержание хлористого натрия в растворяющем растворе, %;

- содержание хлористого магния в растворяющем растворе, %.

Эмпирические коэффициенты для определения хлористого натрия рассчитывают в соответствии с прототипом по замеренным значениям содержания в растворяющем растворе KCl, MgCl2, температуры и плотности жидкой фазы. Содержание хлористого магния в готовом растворе практически равно его содержанию в растворяющем растворе - из-за низкого содержания этого компонента в руде, поэтому содержание MgCl2 в готовом растворе может быть определено по уравнению

Содержание хлористого магния в готовом растворе может быть определено и автоматическим титратором с отбором проб либо аналитически известными методами 1 раз в смену или реже, поскольку колебания этого компонента в жидкой фазе незначительны из-за большого объема циркулирующих в системе жидких фаз.

Таким образом, решается задача предлагаемого изобретения - достигается упрощение управления процессом растворения сильвинитовых руд за счет расчета расхода руды, основанного на аналитических зависимостях диаграммы растворимости системы: KCl-NaCl-MgCl2-H2O, использование которых не требует определения коэффициентов регрессии и позволяет использовать предлагаемый способ с применением средств контроля и управления на любых галургических фабриках.

Способ также позволяет учитывать практические особенности конкретных производств хлористого калия, например условия рудоподготовки, режимы растворения и др., через замер содержания хлористого калия в твердой фазе галитового отвала и через степень насыщения готового раствора по KCl.

Способ осуществляли следующим образом.

С помощью средств контроля замеряли:

Gр.р-р - расход растворяющего раствора, т/ч, например, индукционным расходомером;

- содержание воды в растворяющем растворе, %, например автоматическим титратором с пробоотбором и применением реактива Фишера, либо расчетно;

- расход воды, поступающей на растворение, включая воду на промывку, пар на подогрев суспензии в растворителях, воду на промывку отвала, влагу в руде, т/ч, например, диафрагменными расходомерами и аналитически - в поступающей руде;

- содержание хлористого магния в растворяющем растворе, %, например, автоматическим титратором с пробоотбором и применением реактива Трилон «В» либо, при отсутствии прибора, аналитически - 1 раз в смену;

- содержание KCl в растворяющем растворе, %, например, радиометрическим калиметром;

CKClо.тв. - содержание KCl в твердой фазе галитового отвала, %, замеряли аналитически 1-2 раза в сутки или реже;

G0 - расход галитового отвала, т/ч, замеряли с помощью автоматического весоизмерителя.

Содержание воды в растворяющем растворе наряду с замером автоматическим титратором с реактивом Фишера может быть рассчитано по содержанию хлористого калия, хлористого магния и расчетному значению хлористого натрия в растворяющем растворе, полученному с применением эмпирических коэффициентов для определения хлористого натрия в соответствии с прототипом, по зависимости

где

CNaClр.р-р - расчетное содержание хлористого натрия в растворяющем растворе, %. По расходу растворяющего раствора, замеренному или рассчитанному, содержанию в нем воды и замеренному расходу воды, поступающей на растворение, рассчитывали общий расход воды - , идущий на растворение, по зависимости

По расходу растворяющего раствора и замеренному содержанию в нем калия определяли расход хлористого калия, поступающего на растворение, GKClр.р-р, т/ч:

Содержание хлористого магния в готовом растворе - практически равно его содержанию в растворяющем растворе - из-за низкого содержания этого компонента в руде, поэтому содержание MgCl2 в готовом растворе может быть определено по уравнению

По зависимости:

, где

Тгот.р-р - температура готового раствора, °С;

определяли концентрацию насыщения по хлористому калию в готовом растворе при αKCl=1 и αNaCl=1.

По полученным значениям , CKClгот.р-р и GKClр.р-р определяли расход руды - Gруды, необходимый для получения готового раствора со степенью насыщения по KCl-αKCl=1 с учетом замеренной концентрации KCl в руде по зависимости

По замеренному расходу галитового отвала и содержанию в твердой фазе отвала хлористого калия определяли степень извлечения при растворении KCl из руды в готовый раствор - βKClгот.р-р по зависимости

при этом степень извлечения является поправочным повышающим коэффициентом к расходу руды

Вычисленные значения расхода руды подавали в качестве задания в систему управления весовым дозатором руды, поступающей на растворение, с учетом поправочных коэффициентов.

Примеры осуществления способа

Пример 1

С помощью средств контроля замеряли:

Gр.р-р - расход растворяющего раствора с помощью индукционного расходомера, 2330 т/ч;

- общий расход воды, поступающей на растворение (с рудой - аналитически, промывка ковшей элеваторов, пар на дюзы в растворители и др.), с помощью диафрагменных расходомеров, 25,5 т/ч;

G0 - расход галитового отвала, 490 т/час, определяли автоматическим весоизмерителем;

CKClо.тв. - содержание KCl в твердой фазе галитового отвала, аналитически 1 раз в сутки, 0,74%;

CKClруда - содержание KCl в руде - с помощью радиометрического калиметра, 30%;

- содержание воды в растворяющем растворе с помощью автоматического титратора с циклическим отбором пробы и титрованием с реактивом Фишера, 67,3%;

- содержание хлористого магния в растворяющем растворе с помощью автоматического титратора с циклическим пробоотбором и титрованием с реактивом Трилон «В», 0,6%;

CKClр.р-р - содержание хлористого калия в растворяющем растворе с помощью радиометрического калиметра, 12,78%;

Тгот.р-р - температуру готового раствора с помощью термометра сопротивления, 97°C.

По расходу растворяющего раствора, содержанию в нем воды и замеренному расходу воды, поступающей на растворение, рассчитывали общий расход воды, идущий на растворение, по зависимости

, или

По расходу растворяющего раствора и содержанию в нем калия определяли расход хлористого калия, поступающего на растворение, GKClр.р-р:

или

Концентрацию хлористого магния в готовом растворе определяли по уравнению

или

По зависимости

определяли:

По полученным значениям , СKClгот.р-р и GKClр.р-р определяли расход руды - Gруды, необходимый для получения готового раствора со степенью насыщения по KCl-αKCl=1 с учетом замеренной концентрации KCl в руде по зависимости

или

По замеренному расходу галитового отвала и содержанию в твердой фазе отвала хлористого калия определяли степень извлечения при растворении KCl из руды в готовый раствор - βKClгот.р-р по зависимости

или

при этом степень извлечения является поправочным повышающим коэффициентом к расходу руды

или

Вычисленное значение расхода руды подали в качестве задания в систему управления весовым дозатором руды, подаваемой на растворение, с помощью контроллера.

Пример 2

Способ осуществляли в соответствии с примером 1, но содержание воды в растворяющем растворе рассчитывали по содержанию хлористого калия, хлористого магния и расчетному значению хлористого натрия в растворяющем растворе, полученному с применением эмпирических коэффициентов для определения хлористого натрия, по зависимости

где

- содержание хлористого натрия в растворяющем растворе, рассчитанное в соответствии с прототипом, с получением

Похожие патенты RU2564834C1

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2008
  • Сафрыгин Юрий Степанович
  • Паскина Анна Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
RU2399587C2
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2013
  • Сафрыгин Юрий Степанович
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
  • Паскина Анна Владимировна
  • Рутковская Татьяна Ивановна
  • Кириш Константин Сергеевич
RU2548991C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ СИЛЬВИНИТОВЫХ РУД 2013
  • Сафрыгин Юрий Степанович
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
  • Паскина Анна Владимировна
  • Рутковская Татьяна Ивановна
  • Кириш Константин Сергеевич
RU2549403C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2008
  • Сафрыгин Юрий Степанович
  • Паскина Анна Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
RU2406695C2
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ СИЛЬВИНИТОВЫХ РУД 2009
  • Сафрыгин Юрий Степанович
  • Паскина Анна Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
RU2398620C1
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ СИЛЬВИНИТОВЫХ РУД 2007
  • Сафрыгин Юрий Степанович
  • Паскина Анна Владимировна
  • Тимофеев Владимир Иванович
  • Букша Юрий Владимирович
RU2352385C2
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2015
  • Сафрыгин Юрий Степанович
  • Кириш Константин Сергеевич
  • Тимофеев Владимир Иванович
  • Рутковская Татьяна Ивановна
  • Паскина Анна Владимировна
RU2598933C2
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ СОЛЕЙ 2015
  • Сафрыгин Юрий Степанович
  • Осипова Галина Владимировна
  • Тимофеев Владимир Иванович
  • Панасюк Евгений Борисович
RU2598937C2
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2013
  • Сафрыгин Юрий Степанович
  • Букша Юрий Владимирович
  • Паскина Анна Владимировна
  • Тимофеев Владимир Иванович
  • Осипова Галина Владимировна
RU2555487C2
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ ХЛОРИСТОГО КАЛИЯ 2009
  • Сафрыгин Юрий Степанович
  • Осипова Галина Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
  • Щелконогов Анатолий Афанасьевич
  • Киселев Василий Александрович
  • Потеха Алексей Иванович
RU2409415C2

Реферат патента 2015 года СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ СИЛЬВИНИТОВЫХ РУД

Изобретение может быть использовано в производстве хлористого калия методом растворения и кристаллизации. Способ управления процессом растворения сильвинитовых руд включает регулирование подачи руды в зависимости от содержания полезного компонента во входных потоках, измерение температуры во входных потоках, измерение температуры готового раствора, измерение плотности и расхода растворяющего раствора. Определяют содержание хлористого натрия в растворяющем растворе по содержанию полезного компонента, плотности и температуре, рассчитывают подачу руды. Дополнительно измеряют содержание хлористого магния в готовом растворе, содержание хлористого калия в твердой фазе галитового отвала, его расход и расход воды, поступающей на растворение. По расходу растворяющего раствора, содержанию в нем воды и замеренному расходу воды, поступающей на растворение, рассчитывают общий расход воды, идущий на растворение. Определяют расход руды, необходимый для получения готового раствора со степенью насыщения по KCl αKCl=1. Вычисленное значение расхода руды подают в качестве задания в систему управления весовым дозатором руды, подаваемой на растворение. Изобретение позволяет упростить управление процессом растворения сильвинитовых руд. 1 з.п. ф-лы, 2 пр.

Формула изобретения RU 2 564 834 C1

1. Способ управления процессом растворения сильвинитовых руд, включающий регулирование подачи руды в зависимости от содержания полезного компонента во входных потоках, измерение температуры во входных потоках, измерение температуры готового раствора, измерение плотности и расхода растворяющего раствора, определение в нем содержания хлористого натрия по содержанию полезного компонента, плотности и температуре, расчет подачи руды, отличающийся тем, что дополнительно измеряют содержание хлористого магния в готовом растворе, содержание хлористого калия в твердой фазе галитового отвала, его расход и расход воды, поступающий на растворение, по зависимости
, где
CKCl гот.р-р - концентрация насыщения готового раствора по хлористому калию, при степени насыщения его по хлористому калию, αKCl=1, и по хлористому натрию, αNaCl=1, т/1000 т H2O;
- концентрация хлористого магния в готовом растворе, т/1000 т H2O;
Тгот.р-р _ температура готового раствора, °C;
определяют концентрацию насыщения по хлористому калию в готовом растворе при αKCl=1 и αNaCl=1;
по расходу растворяющего раствора, замеренному или рассчитанному, содержанию в нем воды и замеренному расходу воды, поступающей на растворение, рассчитывают общий расход воды, идущий на растворение, по зависимости
, где
Gр.р-р - расход растворяющего раствора, т/час;
- содержание воды в растворяющем растворе, %;
- расход воды, поступающей на растворение, включая воду на промывку, пар на подогрев суспензии в растворителях, воду на промывку отвала, влагу в руде, т/час;
по расходу растворяющего раствора и замеренному содержанию в нем калия определяют расход хлористого калия, поступающего на растворение, GKClр.р-р:
, где
CKClр.р-р - содержание KCl в растворяющем растворе, %;
по полученным значениям , CKClгот.р-р и GKCl р.р-р определяют расход руды - Gруды, необходимый для получения готового раствора со степенью насыщения по KCl - αKCl=1 с учетом замеренной концентрации KCl в руде по зависимости
, где
CKCl руда - содержание KCl в руде, %;
по замеренному расходу галитового отвала и содержанию в твердой фазе отвала хлористого калия определяют степень извлечения при растворении KCl из руды в готовый раствор - βKClгот.р-р по зависимости
где
G0 - расход галитового отвала, т/ч;
CKCl о.тв. - содержание KCl в твердой фазе галитового отвала, %;
при этом степень извлечения является поправочным повышающим коэффициентом к расходу руды,

и вычисленное значение расхода руды подают в качестве задания в систему управления весовым дозатором руды, подаваемой на растворение.

2. Способ по п. 1, отличающийся тем, что содержание воды в растворяющем растворе замеряют с помощью автоматического титратора с реактивом Фишера либо рассчитывают по содержанию хлористого калия, хлористого магния и расчетному значению хлористого натрия в растворяющем растворе, полученному с применением эмпирических коэффициентов для определения хлористого натрия, по зависимости
где
- содержание хлористого натрия в растворяющем растворе, %;
- содержание хлористого магния в растворяющем растворе, %.

Документы, цитированные в отчете о поиске Патент 2015 года RU2564834C1

СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ РАСТВОРЕНИЯ СИЛЬВИНИТОВЫХ РУД 2007
  • Сафрыгин Юрий Степанович
  • Паскина Анна Владимировна
  • Тимофеев Владимир Иванович
  • Букша Юрий Владимирович
RU2352385C2
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ПОЛУЧЕНИЯ ХЛОРИСТОГО КАЛИЯ 2008
  • Сафрыгин Юрий Степанович
  • Паскина Анна Владимировна
  • Букша Юрий Владимирович
  • Тимофеев Владимир Иванович
RU2399587C2
Способ автоматического управления процессом выщелачивания хлористого калия 1982
  • Высоцкий Евгений Александрович
  • Головков Борис Юрьевич
  • Школьников Александр Дмитриевич
  • Маринич Федор Дмитриевич
SU1060569A1
CN 101982412 A, 02.03.2011.

RU 2 564 834 C1

Авторы

Сафрыгин Юрий Степанович

Букша Юрий Владимирович

Тимофеев Владимир Иванович

Рутковская Татьяна Ивановна

Кириш Константин Сергеевич

Даты

2015-10-10Публикация

2014-04-22Подача