СПОСОБ ДИАГНОСТИКИ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ Российский патент 2015 года по МПК A61B5/01 

Описание патента на изобретение RU2566214C1

Изобретение относится к медицине, а именно к онкологии.

Наиболее близким техническим решением к предлагаемому способу относится способ диагностики рака молочной железы, заключающийся в анализе температурного поля этого органа (патент RU №2043074, опубл. 10.09.1995).

Недостатком его является отсутствие надежного термографического критерия, обеспечивающего необходимый уровень точности, и, как следствие, высокая частота ложноположительных и ложноотрицательных заключений.

Задачей изобретения является повышение точности диагностики.

Указанный технический результат достигается тем, что при анализе температурного поля молочной железы сначала в режиме реального времени производят сканирование этого органа с помощью инфракрасной камеры, полученные термограммы разбивают на квадратные ячейки 1 см2, в которых для каждого пикселя рассчитывают мультифрактальные спектры флуктуаций температуры во времени, полученные спектры осредняют по каждой ячейке и аппроксимируют квадратичным полиномом, затем рассчитывают долю ячеек со значением ширины спектра менее 0,06 и формулируют заключение о наличии злокачественной опухоли молочной железы при обнаружении не менее 25% ячеек с обозначенной шириной спектра.

Отличительной особенностью метода является то, что для объективной интерпретации данных динамической инфракрасной термографии молочных желез используется метод мультифрактального анализа, основанный на расчете спектров скейлинговых показателей и спектров сингулярностей, позволяющий дифференцировать температурные сигналы здоровой и пораженной раком молочной железы в терминах мульти- и монофрактальности.

Сущность предлагаемого способа иллюстрируется чертежами, где на фиг. 1 изображены температурные сигналы, зарегистрированные с помощью инфракрасной камеры на поверхности пораженной раком (7), противоположной непораженной (2) и здоровой (3) (без признаков онкопатологии) молочных желез. На фиг. 2, а и б представлены спектры скейлинговых показателей τ(q) и спектры сингулярностей D(h) флуктуаций поверхностной температуры в ячейке пораженной раком (черные круглые маркеры), противоположной непораженной (белые круглые маркеры) и здоровой (треугольные белые маркеры) молочных желез. На фиг. 3, а и б представлены осредненные гистограммы распределения значений коэффициентов с1 (положение максимума спектра сингулярностей) и с2 (полуширина спектра сингулярностей) для 33 молочных желез с опухолью (черная гистограмма), 32 непораженных молочных желез (белая гистограмма) и 28 здоровых молочных желез (серая гистограмма) пациенток контрольной группы. На фиг. 3, в изображено процентное соотношение «монофрактальных» (черные столбцы: 2с2<0,06), «мультифрактальных» ячеек (белые столбцы: 2с2≥0,06) и ячеек, в которых не наблюдается скейлинга (серые столбцы).

Сущность предлагаемого способа заключается в следующем.

Тепловизионное обследование молочных желез пациенток проводится в смотровом кабинете при температуре 20-22°С. Во время тепловизионной съемки обследуемая находится в положении сидя с опущенными руками во избежание мышечного дискомфорта, инфракрасная камера располагается фронтально на расстоянии 1 м от груди пациентки. Частота записи тепловых изображений равна 50 Гц. Каждая последовательность (инфракрасный фильм) насчитывает 30000 инфракрасных изображений молочных желез, что соответствует десяти минутам обследования. На тело пациентки наклеивают метки из черной бархатной бумаги, которые в последующем используют в качестве «опорных точек» при коррекции движений пациентки, которые могут искажать результаты тепловизионного обследования.

Полученные термограммы молочных желез разбивают на квадратные ячейки 1 см2 (фиг. 4-6) и, используя метод максимумов модулей вейвлет-преобразования, в каждой точке ячейки рассчитывают спектры сингулярностей флуктуаций температуры во времени (фиг. 1 и 2), затем результат осредняют по ячейке и аппроксимируют квадратичными полиномами τ(q)=-c0+c1q-c2 q2/2 (фиг. 2, а) и D(h)=c0-(h-c1)2/2c2 (фиг. 2, б), где τ - скейлинговые показатели, q - показатели степени при построении частичных функций, D - размерности Хаусдорфа, h - показатели Гельдера, с0 - фрактальная размерность сингулярностей, с1 - значение h, соответствующее максимуму функции D(h), 2с2 - ширина спектра сингулярностей D(h) [Wavelet based multifractal formalism: Application to DNA sequences, satellite images of the cloud structure and stock market data / A. Arneodo, B. Audit, P. Decoster et al. // The science of disasters: climate disruptions, heart attacks, and market crashes / Ed. by A. Bunde, J. Kropp, H.J. Schellnhuber. - Berlin: Springer Verlag, 2002. - Pp.8-9.].

На фиг. 1 изображены температурные сигналы, зарегистрированные с помощью инфракрасной камеры на поверхности пораженной раком (1), противоположной непораженной (2) и здоровой (3) (без признаков онкопатологии) молочных желез. Визуально данные сигналы мало отличимы друг от друга. На фиг. 2 представлены результаты обработки температурных сигналов методом мультифрактального анализа на основе вейвлет-преобразования (метод максимумов модулей вейвлет-преобразования): спектры скейлинговых показателей τ(q) (фиг. 2, а) и спектры сингулярностей D(h) (фиг. 2, б) флуктуаций поверхностной температуры в ячейке пораженной раком (черные круглые маркеры) и непораженной (белые круглые маркеры) молочных желез у пациентки основной группы и здоровой (белые треугольные маркеры) молочной железы у пациентки контрольной группы. При характеристике фрактальной морфологии анализируемого сигнала исходят из того, что для монофрактального сигнала характерна линейная функция τ(q) и D(h)=const (точка), для мультифрактального сигнала - нелинейная функция τ(q) и колоколообразный (парабола) спектр сингулярностей D(h). По результатам мультифрактального анализа температурных сигналов, зарегистрированных на поверхности молочных желез с помощью инфракрасной камеры, установлено, что температурные сигналы непораженных молочных желез характеризуются мультифрактальностью как по спектру скейлинговых показателей, так и по спектру сингулярностей, тогда как сигналы молочной железы, пораженной раком, являются монофрактальными.

На фиг. 3, а представлены осредненные гистограммы распределения значений коэффициента в диапазоне 0,6≤c2≤1,8 для 33 молочных желез с опухолью (черная гистограмма), 32 непораженных молочных желез (белая гистограмма) и 28 здоровых молочных желез (серая гистограмма) пациенток контрольной группы. Средние значения коэффициента с1 для представленных гистограмм практически совпадают. Значение коэффициента с2, напротив, является важным отличительным признаком. На фиг. 3, б видно, что гистограмма значений для пораженной раком молочной железы значительно смещена в сторону меньших значений по сравнению с гистограммами для непораженной молочной железы и здоровой молочной железы пациентки контрольной группы. Ячейки с меньшими значениями коэффициента с2 наиболее часто встречаются среди ячеек молочной железы с опухолью, что подтверждает ослабление мультифрактальных свойств флуктуаций поверхностной температуры молочной железы с опухолью. Это является обоснованием того, что значение 2с2=2·0,03=0,06 было выбрано в качестве нижнего (верхнего) порогового значения при классификации квадратов с монофрактальными (мультифрактальными) свойствами (фиг. 4-6). На фиг. 3, в изображено процентное соотношение «монофрактальных» (черные столбцы: 2 с2<0,06), «мультифрактальных» ячеек (белые столбцы: 2с2≥0,06) и ячеек, в которых не наблюдается скейлинга (серые столбцы). Показано, что доля «монофрактальных» ячеек (черные столбцы) на термограмме пораженной раком молочной железы составляет не менее 25% от общего числа ячеек, покрывающих термограмму, что приблизительно в 2 раза больше, чем соответствующее значение для молочных желез без признаков онкопатологии.

На заключительном этапе анализа определяют долю «монофрактальных» ячеек со значением ширины спектра менее 0,06 (фиг. 3, б) и формулируют заключение о наличии опухоли молочной железы при обнаружении не менее 25% ячеек с обозначенной шириной спектра (фиг. 3, в).

Предлагаемый способ диагностики позволяет посредством метода максимумов модулей вейвлет-преобразования [Wavelet based multifractal formalism: Application to DNA sequences, satellite images of the cloud structure and stock market data / A. Arneodo, B. Audit, P. Decoster et al. // The science of disasters: climate disruptions, heart attacks, and market crashes / Ed. by A. Bunde, J. Kropp, H. J. Schellnhuber. - Berlin: Springer Verlag, 2002. - Pp.8-9.] выявить характерные особенности динамики температуры в различных точках поверхности здоровой и пораженной раком молочных желез, определить объективные термографические критерии наличия опухолевого процесса в молочной железе, которые не могут быть получены при общепринятом анализе статических термограмм, получить новую диагностически значимую информацию о физиологии и патофизиологии в молочной железе [Dynamic infrared imaging for the detection of malignancy / T.M. Button, H. Li, P. Fisher et al. // Phys. Med. Biol. - 2004. - Vol.49. - Pp.3108.].

Предложенная методика позволяет повысить точность и надежность результатов диагностики.

Разработанный способ диагностики рака молочной железы был использован для комплексного обследования молочных желез у 33 пациенток в возрасте от 37 до 83 лет, проходящих лечение в Государственном бюджетном учреждении здравоохранения Пермского края «Пермский краевой онкологический диспансер» по поводу рака молочной железы (основная группа), и 14 соматически сохранных пациенток в возрасте от 23 до 79 лет без признаков патологии молочных желез (контрольная группа). Предложенный способ обеспечил специфичность в 86% случаев (доля позитивных результатов теста у пациентов основной группы), чувствительность - в 76% случаев (доля негативных результатов теста у пациентов контрольной группы), точность - в 80% случаев (доля правильных результатов теста среди всех обследованных), прогностическую ценность положительного результата - в 86% случаев (доля истинно положительных результатов теста среди всех положительных результатов) и прогностическую ценность отрицательного результата - в 75% случаев (доля истинно отрицательных результатов теста среди всех отрицательных результатов) [Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis / E. Gerasimova, B. Audit, S.-G. Roux et al. //Frontiers in physiology. - 2014. - Vol.5. - Pp.176.].

Пример 1

На фиг. 4 изображена разбитая на квадратные ячейки термограмма пораженной раком молочной железы пациентки основной группы (№20). Цвета ячеек имеют следующие значения: черный - ширина спектра сингулярностей <0,06 («монофрактальная» ячейка), белый - ширина спектра сингулярностей ≥0,06 («мультифрактальная» ячейка), серый - скейлинг отсутствует. На термограмме пораженной раком молочной железы выявлено 49,7% «монофрактальных» (черных) ячеек с шириной спектра сингулярностей <0,06. Заключение: в соответствии с предложенным критерием обнаружение на термограмме более 25% черных ячеек указывает на наличие злокачественной опухоли в молочной железе.

Пример 2

На фиг. 5 изображена разбитая на квадратные ячейки термограмма здоровой (без признаков онкопатологии) молочной железы пациентки основной группы (№20). Цвета ячеек имеют следующие значения: черный - ширина спектра сингулярностей <0,06 («монофрактальная» ячейка), белый - ширина спектра сингулярностей ≥0,06 («мультифрактальная» ячейка), серый - скейлинг отсутствует. На термограмме здоровой молочной железы выявлено 7,7%) «монофрактальных» (черных) ячеек с шириной спектра сингулярностей <0,06. Заключение: в соответствии с предложенным критерием обнаружение на термограмме менее 25% черных ячеек указывает на отсутствие патологии молочной железы.

Пример 3

На фиг. 6 изображена разбитая на квадратные ячейки термограмма здоровой (без признаков онкопатологии) молочной железы пациентки контрольной группы (№14). Цвета ячеек имеют следующие значения: черный - ширина спектра сингулярностей <0,06 («монофрактальная» ячейка), белый - ширина спектра сингулярностей ≥0,06 («мультифрактальная» ячейка), серый - скейлинг отсутствует. На термограмме здоровой молочной железы выявлено 11% «монофрактальных» (черных) ячеек с шириной спектра сингулярностей <0,06. Заключение: в соответствии с предложенным критерием обнаружение на термограмме менее 25% черных ячеек указывает на отсутствие патологии молочной железы.

Похожие патенты RU2566214C1

название год авторы номер документа
СПОСОБ ДИАГНОСТИКИ РИСКА ФОРМИРОВАНИЯ ДЕФИЦИТА ПРОТИВООПУХОЛЕВОЙ ИММУННОЙ ЗАЩИТЫ 2015
  • Добродеева Лилия Константиновна
  • Патракеева Вероника Павловна
  • Ставинская Ольга Александровна
RU2605310C1
СПОСОБ ИССЛЕДОВАНИЯ СОСТОЯНИЯ ПОСТОПЕРАЦИОННОЙ ЗОНЫ ПОСЛЕ КОМБИНИРОВАННОГО ЛЕЧЕНИЯ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ 2009
  • Кондаков Андрей Васильевич
  • Домбровский Александр Юрьевич
  • Щербаков Михаил Иванович
  • Меских Елена Валерьевна
RU2405419C1
СПОСОБ ДИАГНОСТИКИ ОПУХОЛЕВЫХ ПОРАЖЕНИЙ ПОЗВОНОЧНИКА 2014
  • Кит Олег Иванович
  • Балязин-Парфёнов Игорь Викторович
  • Барашев Артём Андреевич
RU2547081C1
СПОСОБ ДИАГНОСТИКИ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ И РАКА ЯИЧНИКОВ 2017
  • Иванов Юрий Дмитриевич
  • Плешакова Татьяна Олеговна
  • Мальсагова Кристина Ахмедовна
  • Козлов Андрей Федорович
  • Арчаков Александр Иванович
  • Попов Владимир Павлович
RU2696114C2
СПОСОБ ПОЛУЧЕНИЯ ИНФОРМАЦИОННОГО ОБРАЗА РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ ПО МАММОГРАММАМ 2002
  • Останькович А.А.
  • Вайман С.Д.
RU2235361C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ИСХОДОВ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ 2014
  • Генс Гелена Петровна
  • Сулимов Владимир Борисович
  • Моисеева Наталья Ивановна
  • Сулимов Алексей Владимирович
  • Овсий Оксана Геннадиевна
RU2563437C1
Способ восстановления локомоторной функции верхней конечности на стороне мастэктомии, проведенной по поводу рака молочной железы 2019
  • Гигинейшвили Георгий Ревазович
  • Котенко Наталья Владимировна
  • Ланберг Ольга Александровна
RU2700536C1
СПОСОБ ФЛЮОРЕСЦЕНТНОГО ОПРЕДЕЛЕНИЯ СКОРОСТИ ЛИМФОТОКА ОТ МОЛОЧНОЙ ЖЕЛЕЗЫ ДО РЕГИОНАРНЫХ ЛИМФОКОЛЛЕКТОРОВ 2023
  • Зикиряходжаев Азизжон Дилшодович
  • Сарибекян Эрик Карлович
  • Захарова Мария Александровна
  • Найдина Карина Александровна
RU2805793C2
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ЗЛОКАЧЕСТВЕННОЙ И ДОБРОКАЧЕСТВЕННОЙ ПАТОЛОГИИ МОЛОЧНОЙ ЖЕЛЕЗЫ 2013
  • Булгаков Александр Александрович
  • Апанасевич Владимир Иосифович
  • Елисейкина Марина Геннадьевна
RU2530557C1
СПОСОБ ДИАГНОСТИКИ МЕТАСТАТИЧЕСКОГО ПОРАЖЕНИЯ СТОРОЖЕВОГО ЛИМФАТИЧЕСКОГО УЗЛА ПРИ РАКЕ ЩИТОВИДНОЙ ЖЕЛЕЗЫ 2012
  • Чиссов Валерий Иванович
  • Решетов Игорь Владимирович
  • Степанов Станислав Олегович
  • Митина Лариса Анатольевна
  • Бородина Наталья Борисовна
RU2499560C1

Иллюстрации к изобретению RU 2 566 214 C1

Реферат патента 2015 года СПОСОБ ДИАГНОСТИКИ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ

Изобретение относится к медицине, а именно к онкологии, и может быть использовано для диагностики рака молочной железы. В режиме реального времени производят сканирование молочной железы с помощью инфракрасной камеры. Полученные термограммы разбивают на квадратные ячейки 1 см2, в которых для каждого пикселя рассчитывают мультифрактальные спектры флуктуаций температуры во времени. Полученные спектры осредняют по каждой ячейке и аппроксимируют квадратичным полиномом. Рассчитывают долю ячеек со значением ширины спектра менее 0,06 и формулируют заключение о наличии злокачественной опухоли молочной железы при обнаружении не менее 25% ячеек с обозначенной шириной спектра. Способ обеспечивает повышение точности диагностики за счет определения объективных термографических критериев наличия опухолевого процесса в молочной железе. 6 ил., 3 пр.

Формула изобретения RU 2 566 214 C1

Способ диагностики рака молочной железы, заключающийся в анализе температурного поля этого органа, отличающийся тем, что сначала, в режиме реального времени, производят сканирование с помощью инфракрасной камеры, полученные термограммы разбивают на квадратные ячейки 1 см2, в которых для каждого пикселя рассчитывают мультифрактальные спектры флуктуаций температуры во времени, полученные спектры осредняют по каждой ячейке и аппроксимируют квадратичным полиномом, затем рассчитывают долю ячеек со значением ширины спектра менее 0,06 и формулируют заключение о наличии опухоли молочной железы при обнаружении не менее 25% ячеек с обозначенной шириной спектра.

Документы, цитированные в отчете о поиске Патент 2015 года RU2566214C1

СПОСОБ РАННЕЙ ДИАГНОСТИКИ ОПУХОЛЕВЫХ ЗАБОЛЕВАНИЙ МОЛОЧНОЙ ЖЕЛЕЗЫ 1992
  • Евтихиев Н.Н.
  • Куртев Н.Д.
  • Анцыферов С.С.
  • Ленская О.П.
  • Богдасаров Ю.Б.
  • Габуния Р.И.
RU2043074C1
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ СТЕПЕНИ ВЫРАЖЕННОСТИ ДИФФУЗНОЙ МАСТОПАТИИ 2008
  • Мустафин Чингиз Куанычевич
  • Веснин Сергей Георгиевич
  • Вартанян Карэн Феликсович
RU2364327C1
DE 10017900 A1 11.01.2001
JP 2007215809 A 30.08.2007
ГИЛЕВА О.С
и др
Междисциплинарные подходы к ранней диагностике и скринингу опухолевых и предопухолевых заболеваний (на примере рака молочной железы)
Изложница с суживающимся книзу сечением и с вертикально перемещающимся днищем 1924
  • Волынский С.В.
SU2012A1
BUTTON T.M
et al
Dynamic

RU 2 566 214 C1

Авторы

Герасимова Евгения Игоревна

Арнеодо Алайн

Аргул Франсуаза

Гилева Ольга Сергеевна

Баяндин Юрий Витальевич

Наймарк Олег Борисович

Даты

2015-10-20Публикация

2014-07-07Подача