Изобретение относится к способам прогнозирования максимальной скорости конвективной сушки материалов, содержащих свободную и связанную влагу, и может быть использовано в пищевой, химической и других отраслях промышленности, а так же в научных исследованиях кинетики сушки указанного вида материалов.
Наиболее близким по технической сущности и достигаемому эффекту является способ определения длительности сушки продуктов, содержащих свободную и связанную влагу, при смене режима сушки [Патент №2340854 РФ, МПК Кл.7 F26B 25/22, опубл. 10.12.2008 в Бюл. №34], включающий предварительное исследование кинетики сушки материала, в результате которого экспериментально измеряют ряд значений максимальной скорости сушки, при которой удаляется свободная влага в определенном интервале температур сушильного агента; установление взаимосвязи между температурой сушильного агента и максимальной скоростью сушки методами математической обработки полученных результатов измерений, а максимальную скорость сушки при смене температурного режима в выбранном интервале температур определяют расчетным путем по эмпирическому уравнению.
Недостатками данного способа являются: его трудоемкость и длительность, необходимость проведения большого количества экспериментов и их последующая математическая обработка, полученное эмпирическое уравнение справедливо только в выбранном интервале температур.
Технической задачей изобретения является экспрессность, упрощение способа определения максимальной скорости сушки, точность и надежность прогнозирования, обеспечение возможности прогнозирования максимальной скорости сушки при переходе на любой температурный режим в любом технически возможном и целесообразном интервале температур.
Техническая задача изобретения достигается тем, что в способе прогнозирования максимальной скорости конвективной сушки мелкодисперсного материала, содержащего свободную и связанную влагу, при любом температурном режиме, включающем экспериментальное измерение ряда значений максимальной скорости сушки в определенном интервале температур сушильного агента, установление путем математической обработки результатов измерений взаимосвязи между температурой сушильного агента и максимальной скоростью сушки в виде эмпирического уравнения и прогнозирование расчетным путем по полученному эмпирическому уравнению максимальной скорости сушки, при которой удаляется свободная влага, новым является то, что проводят измерения максимальной скорости сушки при двух температурных режимах, в которых температуру сушильного агента измеряют по мокрому термометру или определяют по J-d-диаграмме влажного воздуха и выражают в градусах Кельвина; затем определяют максимальную скорость сушки при любом другом технически возможном и целесообразном температурном режиме расчетным путем по формуле:
,
где N(TM1), N(TM2) - максимальные скорости сушки при первом и втором режимах сушки, с-1; r1, r2 - удельная теплота парообразования жидкости соответственно, при температурах TM1, TM2, Дж/моль; TM1, TM2 - абсолютные температуры сушильного агента на входе в сушилку при первом и втором режимах сушки, замеренные по мокрому термометру, K; R - универсальная газовая постоянная, Дж/(моль·K).
Технический результат изобретения заключается в экспрессности, точности и надежности прогнозирования за счет упрощения способа определения максимальной скорости сушки, обеспечении возможности прогнозирования максимальной скорости сушки при переходе на любой температурный режим в любом технически возможном и целесообразном интервале температур.
Способ прогнозирования максимальной скорости конвективной сушки мелкодисперсного материала, содержащего свободную и связанную влагу, при любом температурном режиме осуществляют следующим образом.
В экспериментальной установке или в промышленном аппарате предварительно проводят конвективную сушку мелкодисперсного продукта при определенном температурном режиме в процессе которой периодически измеряют влагосодержание продукта с целью определения максимальной скорости сушки. Температуру сушильного агента на входе в сушильную камеру измеряют по мокрому термометру или определяют по J-d-диаграмме влажного воздуха и выражают в градусах Кельвина.
Для расчета скорости процесса сушки можно применять законы кинетики химических реакций, в частности максимальную скорость сушки определяют расчетным путем по уравнению:
где N - максимальная скорость сушки продукта, содержащего свободную и связанную влагу, с-1; UH, UP - соответственно начальное и равновесное влагосодержание продукта, кг/кг; А - коэффициент, с-1; R - универсальная газовая постоянная, Дж/(моль·K); TM - абсолютная температура сушильного агента на входе в сушильную камеру, K; r - удельная теплота парообразования жидкости при температуре TM, Дж/моль.
Рассмотрим два режима сушки одного и того же продукта, которые отличаются только значением температуры сушильного агента на входе в сушильную камеру при прочих равных параметрах. Рассчитаем по уравнению (1) максимальные скорости сушки N(TM1) и N(TM2) соответственно при абсолютных температурах сушильного агента ТМ1 и ТМ2;
Разделив уравнения (2) и (3) и преобразовав результат, получим уравнение для расчета максимальной скорости сушки при смене одного температурного режима на другой:
где r1, r2 - удельная теплота парообразования жидкости при температурах соответственно ТМ1 и ТМ2, Дж/моль.
Способ прогнозирования максимальной скорости конвективной сушки мелкодисперсного материала, содержащего свободную и связанную влагу, при любом температурном режиме поясняется следующими примерами.
Пример 1. В качестве практической реализации предлагаемого способа в таблице 1 приведены результаты по конвективной сушке в фонтанирующем слое при относительной скорости фонтанирования 1,1 (отношение скорости воздуха под газораспределительной решеткой при данном режиме сушки к скорости воздуха, соответствующей началу фонтанирования), эквивалентом диаметре частиц 3,8 мм, начальной высоте слоя казеина в сушильной камере 0,1 м, начальном влагосодержании казеина 1 кг влаги / кг сухого казеина. При этом для определения температурного режима сушки измеряли температуру сушильного агента (воздуха) на входе в сушильную камеру как по сухому термометру tC, так и по мокрому tM. Максимальную скорость сушки казеина определяли по уравнению [Патент RU №2340854 «Способ определения длительности сушки продуктов, содержащих свободную и связанную влагу, при смене температурного режима сушки». Арапов В.М., Арапов М.В., Бутурлин С.В., Попов К.С.; опубл. 10.12.2008, Бюл. №34].
Удельную теплоту парообразования воды определяли при температуре мокрого термометра в расчете на 1 кмоль.
Если экспериментальное значение максимальной скорости сушки казеина при температуре сушильного агента по сухому термометру - tM=38.5°С, принять за исходное, то измерив температуру сушильного агента по мокрому термометру при других температурных режимах сушки, по уравнению
,
можно спрогнозировать соответствующее значение максимальной скорости сушки.
Пример 2. В таблице 2 приведены данные по конвективной сушке обессахаренной свекловичной стружки, а также расчетные данные (патент RU №2340854 «Способ определения длительности сушки продуктов, содержащих свободную и связанную влагу, при смене температурного режима сушки», Арапов В.М., Арапов М.В., Бутурлин С.В., Попов К.С.; опубл. 10.12.2008, Бюл. №34). В связи с отсутствием в источнике данных по температуре сушильного воздуха, замеренной по мокрому термометру, ее значение определяем по J-d-диаграмме влажного воздуха на основании температуры воздуха, замеренной по сухому термометру, и по принятому значению - в г воды / кг сухого воздуха, влагосодержания воздуха. Указанное влагосодержание воздуха является наиболее вероятным в центрально-черноземном регионе России.
Если максимальную скорость сушки при температурном режиме №5, tc=90°C, принять за исходное значение, то значения максимальной скорости сушки при других температурных режимах можно спрогнозировать расчетом по уравнению (4).
Полученные данные могут быть использованы в процессе сушки для регулирования скорости процесса сушки.
Преимущества описанного способа перед известным заключаются в сокращении количества экспериментальных измерений максимальной скорости сушки; не требуется проводить математическую обработку результатов измерений с целью получения экспериментального расчетного уравнения; максимальную скорость сушки можно спрогнозировать при смене температурного режима на любой другой целесообразный и технически возможный режим, этот способ характеризуется точностью, надежностью, экспрессностью.
Предлагаемый способ может быть применен при создании или испытании нового сушильного оборудования или технологии сушки, а также при автоматизации и регулировании сушилок.
Позволяет:
- интенсифицировать процесс прогнозирования за счет упрощения экспериментальной части и математической обработки;
- снизить трудоемкость;
- расширить возможность прогнозирования при переходе на любой температурный режим и в любом целесообразном и технически возможном интервале температур;
- рассчитать максимальную скорость сушки с более высокой точностью, надежностью в экспрессном режиме.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИТЕЛЬНОСТИ СУШКИ ПРОДУКТОВ, СОДЕРЖАЩИХ СВОБОДНУЮ И СВЯЗАННУЮ ВЛАГУ, ПРИ СМЕНЕ РЕЖИМА СУШКИ | 2007 |
|
RU2340854C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ ТЕМПЕРАТУРЫ МЕЛКОДИСПЕРСНОГО МАТЕРИАЛА, СОДЕРЖАЩЕГО СВОБОДНУЮ И СВЯЗАННУЮ ВЛАГУ, В ПРОЦЕССЕ КОНВЕКТИВНОЙ СУШКИ | 2012 |
|
RU2492398C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОДОЛЖИТЕЛЬНОСТИ КОНВЕКТИВНОЙ СУШКИ ДИСПЕРСНЫХ ПРОДУКТОВ ПРИ СМЕНЕ ТЕМПЕРАТУРНОГО РЕЖИМА | 2008 |
|
RU2354903C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДОПУСТИМЫХ ТЕМПЕРАТУРНЫХ РЕЖИМОВ СУШКИ ДИСПЕРСНЫХ ПРОДУКТОВ | 2003 |
|
RU2230267C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ДОПУСТИМЫХ ТЕМПЕРАТУРНЫХ РЕЖИМОВ СУШКИ ДИСПЕРСНЫХ ТЕРМОЛАБИЛЬНЫХ ПРОДУКТОВ В УСЛОВИЯХ СТУПЕНЧАТОГО ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ СУШИЛЬНОГО АГЕНТА | 2006 |
|
RU2319085C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ СВЯЗИ ВЛАГИ С ВЕЩЕСТВОМ | 2003 |
|
RU2230311C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МАКСИМАЛЬНОЙ ТЕМПЕРАТУРЫ СУШИЛЬНОГО АГЕНТА ПРИ СУШКЕ ТЕРМОЛАБИЛЬНЫХ ПРОДУКТОВ | 2008 |
|
RU2374577C1 |
СПОСОБ СУШКИ ДРЕВЕСИНЫ | 2010 |
|
RU2457411C2 |
Способ сушки ленточных кинофотоматериалов | 1990 |
|
SU1786463A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛЬНОЙ ИНТЕНСИВНОСТИ СУШКИ ПРЕИМУЩЕСТВЕННО ИЗДЕЛИЙ СТРОИТЕЛЬНОЙ КЕРАМИКИ ПЛАСТИЧЕСКОГО ФОРМОВАНИЯ | 2004 |
|
RU2282803C2 |
Изобретение может быть использовано в пищевой, химической и других отраслях промышленности, а также в научных исследованиях кинетики сушки указанного вида материалов. Способ прогнозирования максимальной скорости конвективной сушки мелкодисперсного материала, содержащего свободную и связанную влагу, при любом температурном режиме, включает экспериментальное измерение ряда значений максимальной скорости сушки в определенном интервале температур сушильного агента, установление путем математической обработки результатов измерений взаимосвязи между температурой сушильного агента и максимальной скоростью сушки в виде эмпирического уравнения и прогнозирование расчетным путем по полученному эмпирическому уравнению максимальной скорости сушки, при которой удаляется свободная влага, новым является то, что проводят измерения максимальной скорости сушки при двух температурных режимах, в которых температуру сушильного агента измеряют по мокрому термометру или определяют по J-d-диаграмме влажного воздуха и выражают в градусах Кельвина; затем определяют максимальную скорость сушки при любом другом технически возможном и целесообразном температурном режиме расчетным путем по формуле. Предлагаемый способ позволяет рассчитать максимальную скорость сушки с более высокой точностью, надежностью в экспрессном режиме. 2 табл.
Способ прогнозирования максимальной скорости конвективной сушки мелкодисперсного материала, содержащего свободную и связанную влагу, при любом температурном режиме, включающий экспериментальное измерение ряда значений максимальной скорости сушки в определенном интервале температур сушильного агента, установление путем математической обработки результатов измерений взаимосвязи между температурой сушильного агента и максимальной скоростью сушки в виде эмпирического уравнения и прогнозирование расчетным путем по полученному эмпирическому уравнению максимальной скорости сушки, при которой удаляется свободная влага, отличающийся тем, что проводят измерения максимальной скорости сушки при двух температурных режимах, в которых температуру сушильного агента измеряют по мокрому термометру или определяют по J-d-диаграмме влажного воздуха и выражают в градусах Кельвина; затем определяют максимальную скорость сушки при любом другом технически возможном и целесообразном температурном режиме расчетным путем по формуле
где N(TM1), N(ТМ2) - максимальные скорости сушки при первом и втором режимах сушки, с-1; r1, r2 - удельная теплота парообразования жидкости соответственно при температурах ТМ1, ТМ2, Дж/моль; ТМ1, ТМ2 - абсолютные температуры сушильного агента на входе в сушилку при первом и втором режимах сушки, замеренные по мокрому термометру, К; R - универсальная газовая постоянная, Дж/(моль·К).
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИТЕЛЬНОСТИ СУШКИ ПРОДУКТОВ, СОДЕРЖАЩИХ СВОБОДНУЮ И СВЯЗАННУЮ ВЛАГУ, ПРИ СМЕНЕ РЕЖИМА СУШКИ | 2007 |
|
RU2340854C1 |
СПОСОБ ПРОГНОЗИРОВАНИЯ ТЕМПЕРАТУРЫ МЕЛКОДИСПЕРСНОГО МАТЕРИАЛА, СОДЕРЖАЩЕГО СВОБОДНУЮ И СВЯЗАННУЮ ВЛАГУ, В ПРОЦЕССЕ КОНВЕКТИВНОЙ СУШКИ | 2012 |
|
RU2492398C1 |
Способ конвективной сушки овощных и фруктовых выжимок | 1981 |
|
SU977908A1 |
US 20100229420 A1, 16.09.2010. |
Авторы
Даты
2015-11-20—Публикация
2014-07-22—Подача