РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ Российский патент 2015 года по МПК H01Q17/00 C09D5/32 

Описание патента на изобретение RU2570003C1

Изобретение относится к радиотехнике и может быть использовано для изготовления поглотителей электромагнитного излучения 5-миллиметрового диапазона (52-73 ГГц).

Известен композиционный радиопоглощающий материал для защиты от электромагнитных полей (см. патент RU 2380867, Н05К 9/00, опубл. 27.01.2010), состоящий из полимерного связующего с порошкообразным наполнителем на основе феррита, легированного ионами скандия, с дисперсностью от 5 до 50 мкм с добавлением углеродных нанотрубок, при следующем содержании компонентов, мас.%:

полимерное связующее 29,40-39,96 бариевый гексагональный феррит, легированный ионами скандия 58,80-69,93 углеродные нанотрубки 0,1-2

Недостатком данного материала является тенденция к снижению поглощающей способности на частотах более 20 ГГц.

Также известен радиопоглощающий материал (см. патент RU 2482149, C09D 5/32, опубл. 20.05.2013), состоящий из полимерного связующего и наполнителя в виде смеси порошкообразного феррита, карбонильного железа с диаметром частиц сферической формы 10-50 мкм и смеси фуллеренов С-60 и С-70, в которую дополнительно введены углеродные нанотрубки в виде многослойных распрямленных трубок диаметром от 10 нм до 0,1 мкм и длиной 10-100 мкм, при следующем соотношении компонентов, мас.%:

полимерное связующее 40-60 феррит 6-9 карбонильное железо 28-42 смесь фуллеренов С-60 и С-70 2-4 углеродные нанотрубки 4-5

Недостатками данного материала являются сложная рецептура и снижение поглощающей способности уже при частотах выше 15 ГГц.

Среди известных радиопоглощающих составов можно выделить несколько материалов, способных поглощать излучение 5-миллиметрового диапазона.

Известен поглотитель электромагнитных волн (см. патент RU 2402845, H01Q 17/00, опубл. 27.10.2010) на основе магнитодиэлектрика, состоящий из полимерного связующего компаунда «Виксинт ПК-68» и радиопоглощающего ферромагнитного наполнителя, в котором в качестве радиопоглощающего ферромагнитного наполнителя использован карбонильный никель в смеси с графитом, при следующем соотношении компонентов, вес.%:

компаунд «Виксинт ПК-68» 30-40 карбонильный никель 50-55 графит остальное

При хорошей поглощающей способности недостатком данного материала является слишком высокий коэффициент отражения (36-44%) в диапазоне частот 57-70 ГГц при толщине материала 2 мм, даже при измерении «на проход». А при измерении коэффициента отражения данного материала на металлической подложке (а именно, в таком виде чаще всего применяются радиопоглощающие материалы) коэффициент отражения будет еще больше.

Известен композиционный материал для поглощения электромагнитных волн (см. патент RU 2375395, C09D 5/32, опубл. 10.12.2009) на основе магнитодиэлектрического материала, содержащий полимерное диэлектрическое связующее и тонкодисперсный наполнитель, в котором полимерное диэлектрическое связующее представляет собой полиорганосилоксановый олигомер с добавкой катализатора, представляющего собой продукт на основе гамма-аминопропилтриэтоксисилана, а тонкодисперсный наполнитель выполнен из сплава железо - алюминий при соотношении (87,5-88,5):(12,5-11,5), вес.% соответственно, при следующем соотношении исходных компонентов в композиционном материале, вес.%:

полиорганосилоксановый олигомер 33,5-40,0 катализатор 1,5-2,0 магнитодиэлектрический тонкодисперсный наполнитель 58,0-65,0

Поглощающая способность данного материала выше, чем у предыдущего в широком диапазоне частот от 1 до 95 ГГц. Однако данный материал как и предыдущий обладает высоким коэффициентом отражения.

Наиболее близким по технической сущности к предлагаемому решению (прототипом) является радиопоглощающий материал (см. патент RU 2417491, H01Q 17/00, опубл. 27.04.2011), содержащий полимерную основу отверждаемый компаунд и частицы углерода технического, который дополнительно содержит полые полимерные или стеклянные микросферы, со следующим соотношением компонентов, вес. %:

отверждаемый компаунд 60-77 углерод технический 20-30 микросферы полые 3-10

Данный материал обладает хорошей поглощающей способностью и низким коэффициентом отражения в диапазоне частот 60-65 ГТц. Так, коэффициент отражения от материала толщиной 5 мм на металлической подложке составляет менее 10%.

Недостатком данного материала является высокая толщина, при которой он способен обеспечить заявленный коэффициент отражения. Во многих областях применения радиопоглощающих материалов их толщина является критичной. Например, если радиопоглощающий материал наносится на внутренние поверхности ВЧ блоков с целью обеспечения электромагнитной совместимости его внутренних элементов, увеличение толщины радиопоглощающего материала влечет за собой увеличение габаритов и массы изделия. Кроме того, необходимость использования радиопоглощающего материала зачастую выявляется уже в процессе настройки прибора, т.е. когда он уже изготовлен, и в этом случае предпочтительнее использовать материал с минимальной толщиной, что позволяет не менять конструкцию прибора.

Техническим результатом предлагаемого изобретения является уменьшение толщины и массы радиопоглощающего материала при сохранении высоких радиопоглощающих свойств и низкого коэффициента отражения на металлической подложке.

Технический результат достигается тем, что в радиопоглощающем материале, содержащем полимерное связующее и наполнитель, в качестве наполнителя используются углеродные нанотрубки, предварительно обработанные в смеси серной и азотной кислот, при следующем содержании компонентов, мас.%:

полимерное связующее 95-99,9 углеродные нанотрубки 0,1-5

Углеродные нанотрубки ранее использовались лишь в качестве добавки в составе радиопоглощающих материалов (см. патент RU 2380867, Н05К 9/00, опубл. 27.01.2010 и RU 2482149, C09D 5/32, опубл. 20.05.2013). Однако предлагаемый в данном изобретении состав радиопоглощающего материала содержит нанотрубки, обработанные в смеси серной и азотной кислот, что значительно повышает их эффективность и позволяет использовать их в качестве единственного наполнителя в составе полимерного композиционного радиопоглощающего материала.

Из-за большой удельной поверхности (до 1000 м2/г), характерной для углеродных нанотрубок, они склонны к агломерации (слипанию), т.е. неравномерному (на микроуровне) распределению в полимере. Эффективность поглощения электромагнитного излучения агломератами углеродных нанотрубок гораздо меньше, чем отдельными нанотрубками, из-за сравнительно малой совокупной площади поглощения и рассеивания излучения. Известно, что в системах с равномерно распределенными по объему проводящими частицами эффективность поглощения увеличивается с уменьшением размера частиц при условии, что их общая масса неизменна (Науменко В.Ю. Пленочные композиционные наноматериалы, поглощающие электромагнитное излучение: дис.… д-ра техн. наук: 05.17.06 / Науменко Владимир Юрьевич. - Саратов, 2006. - 344 с.).

Кроме того, склонность нанотрубок к агломерации способствует их многочисленным контактам друг с другом, что ведет к образованию в полимерной матрице электропроводящей трехмерной сетки. Рост электропроводности композиции ведет к увеличению отражения электромагнитного излучения, что крайне нежелательно для радиопоглощающего материала.

В результате обработки смесью серной и азотной кислот на поверхности углеродных нанотрубок образуются карбоксильные группы. Благодаря наличию карбоксильных групп ранее нерастворимые (в любых растворителях) углеродные нанотрубки приобретают способность образовывать коллоидные растворы в полярных растворителях (вода, ацетон, диметилформамид и др.). Путем смешивания полученных коллоидных растворов с различными полимерными связующими (при условии растворимости выбранного полимера во взятом растворителе) и последующего испарения растворителя получаются композиции, отличающиеся отсутствием агломератов углеродных нанотрубок.

Углеродные нанотрубки за счет наличия карбоксильных групп и описанного способа введения в полимер образуют друг с другом меньше контактов по сравнению с необработанными нанотрубками, благодаря чему проводимость получаемых полимерных композиций меньше при той же концентрации нанотрубок. За счет меньшей проводимости получаемые материалы обладают более низким коэффициентом отражения, но при этом имеют большую поглощающую способность за счет отсутствия процесса агломерации нанотрубок.

Данный технический результат подтвержден в следующем эксперименте. Углеродные нанотрубки марки «Таунит-М» (ТУ 2166-001-02069289-2006) в количестве 5 г смешивали с 250 мл смеси серной и азотной кислот и проводили реакцию при нагревании в течение 30 мин в колбе с обратным холодильником при постоянном перемешивании. Затем углеродные нанотрубки отделяли на мембранном фильтре, промывали слабым раствором соляной кислоты до прекращения качественной реакции на сульфат-ионы и сушили. Необходимое количество обработанных нанотрубок диспергировали под действием ультразвука в ацетоне, добавляли в полученный раствор эпоксидную смолу (компаунд КДС-25 ТУ АДИ 426-93), перемешивали и выпаривали растворитель. К полученной смеси добавляли аминный отвердитель эпоксидных смол, перемешивали и формовали пластины радиопоглощающего материала размером 120×120×1,5 мм путем прямого прессования. Рупорным методом с помощью панорамного измерителя Р2-69 измеряли КСВн (коэффициент стоячей волны по напряжению) полученных образцов на металлической подложке в частотном диапазоне 52-73 ГТц (брали худшие значения в указанном диапазоне) и рассчитывали коэффициент отражения. Составы и свойства полученных материалов в сравнении с прототипом приведены в табл. 1.

Как следует из табл. 1, материал состава 5 при толщине 1,5 мм имеет практически такой же коэффициент отражения как прототип при толщине 5 мм. Таким образом, предлагаемый состав позволяет снизить толщину и массу радиопоглощающего материала более чем в три раза при сохранении радиопоглощающих свойств (коэффициента отражения на металлической подложке) в 5-миллиметровом диапазоне длин волн не хуже, чем у прототипа.

Похожие патенты RU2570003C1

название год авторы номер документа
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ МАТЕРИАЛА, ПОГЛОЩАЮЩЕГО ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ 2019
  • Казьмина Ольга Викторовна
  • Семенова Валерия Игоревна
  • Сусляев Валентин Иванович
  • Дорожкин Кирилл Валерьевич
RU2707656C1
ЗАЩИТНОЕ ПОКРЫТИЕ НА ОСНОВЕ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО РАДИОМАТЕРИАЛА 2015
  • Журавлёва Елена Владимировна
  • Кулешов Григорий Евгеньевич
  • Доценко Ольга Александровна
RU2606350C1
Радиопоглощающий композитный материал на основе многослойных углеродных нанотрубок, модифицированных ферритовыми наночастицами 2019
  • Быков Александр Андреевич
RU2747932C2
Радиопоглощающий материал 2022
  • Зайцева Ольга Владимировна
RU2775007C1
РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ И СПОСОБ ПОЛУЧЕНИЯ РАДИОПОГЛОЩАЮЩЕГО ПОКРЫТИЯ 2022
  • Зефиров Виктор Леонидович
  • Бакина Любовь Игоревна
  • Голубев Андрей Николаевич
RU2783658C1
ТЕРМОСТОЙКОЕ РАДИОПОГЛОЩАЮЩЕЕ ПОКРЫТИЕ НА МИНЕРАЛЬНЫХ ВОЛОКНАХ 2013
  • Прокофьев Михаил Владимирович
  • Бибиков Сергей Борисович
  • Журавлев Сергей Юрьевич
  • Кузнецов Александр Михайлович
  • Куликовский Эдуард Иосифович
RU2526838C1
РАДИОПОГЛОЩАЮЩИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ СТРОИТЕЛЬНОГО НАЗНАЧЕНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2017
  • Черкашин Артемий Викторович
  • Голубков Алексей Григорьевич
  • Фирсенков Андрей Анатольевич
  • Кольцова Татьяна Сергеевна
RU2655187C1
ЛАКОКРАСОЧНАЯ РАДИОПОГЛОЩАЮЩАЯ КОМПОЗИЦИЯ 2015
  • Зефиров Виктор Леонидович
  • Бакина Любовь Игоревна
RU2598090C1
КОМПОЗИЦИОННЫЙ РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ 2008
  • Серебрянников Сергей Владимирович
  • Китайцев Александр Алексеевич
  • Чепарин Владимир Петрович
  • Смирнов Денис Олегович
RU2380867C1
Радиопоглощающий материал (варианты) 2021
  • Шаулов Александр Юханович
  • Стегно Елена Владимировна
  • Бузин Алексей Владимирович
RU2762691C1

Реферат патента 2015 года РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ

Изобретение относится к радиотехнике и может быть использовано для изготовления поглотителей электромагнитного излучения 5-миллиметрового диапазона (52-73 ГГц). Радиопоглощающий материал содержит полимерное связующее и наполнитель - углеродные нанотрубки, предварительно обработанные в смеси серной и азотной кислот, при следующем содержании компонентов, мас.%: полимерное связующее - 95-99,9; углеродные нанотрубки - 0,1-5. Изобретение позволяет уменьшить толщину и массу радиопоглощающего материала при сохранении высоких радиопоглощающих свойств и низкого коэффициента отражения на металлической подложке. 1 табл.

Формула изобретения RU 2 570 003 C1

Радиопоглощающий материал, содержащий полимерное связующее и наполнитель, отличающийся тем, что в качестве наполнителя он содержит углеродные нанотрубки, предварительно обработанные в смеси серной и азотной кислот, при следующем содержании компонентов, мас.%:
полимерное связующее 95-99,9 углеродные нанотрубки 0,1-5

Документы, цитированные в отчете о поиске Патент 2015 года RU2570003C1

РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ 2010
  • Зефиров Виктор Леонидович
  • Хасянова Людмила Александровна
RU2417491C1
АНТИРАДАРНЫЙ МАТЕРИАЛ 2003
  • Бублик Виктор Александрович
  • Великанов Виктор Павлович
  • Жмуров Всеволод Андреевич
  • Ананьев Евгений Николаевич
RU2300832C2
РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ 2007
  • Кондратьев Дмитрий Николаевич
  • Журавский Виталий Григорьевич
  • Гольдин Виктор Вольфович
RU2355081C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ПОГЛОЩЕНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН 2008
  • Ершова Тамара Николаевна
  • Кожевина Наталья Викторовна
  • Кондрашенков Юрий Александрович
RU2375395C1
КОМПОЗИЦИОННЫЙ РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ 2008
  • Серебрянников Сергей Владимирович
  • Китайцев Александр Алексеевич
  • Чепарин Владимир Петрович
  • Смирнов Денис Олегович
RU2380867C1
ПОГЛОТИТЕЛЬ ЭЛЕКТРОМАГНИТНЫХ ВОЛН 2009
  • Зефиров Виктор Леонидович
  • Неводчикова Наталья Евгеньевна
  • Кирпичев Дмитрий Владимирович
RU2402845C1
РАДИОПОГЛОЩАЮЩИЙ МАТЕРИАЛ 2011
  • Быстров Валентин Васильевич
  • Климов Денис Александрович
  • Критский Василий Юрьевич
  • Марчуков Евгений Ювенальевич
  • Низовцев Владимир Евгеньевич
RU2482149C1
US 6265466 B1, 24.07.2001.

RU 2 570 003 C1

Авторы

Захарычев Евгений Александрович

Зефиров Виктор Леонидович

Даты

2015-12-10Публикация

2014-08-26Подача