ХОЛОДНЫЙ КАТОД Российский патент 2016 года по МПК H01J1/30 B82B1/00 

Описание патента на изобретение RU2572245C1

Изобретение относится к области углеродных наноструктур, а именно слоев углеродных нанотрубок на металлических подложках, применяемых в качестве холодных катодов (автоэлектронных источников эмиссии). Преимуществами холодных катодов по сравнению с другими видами источников свободных электронов являются малая чувствительность к внешней радиации, отсутствие накала, высокая плотность тока автоэмиссии, безыинерционность. Совокупность вышеуказанных свойств обуславливает перспективность использования катодов в различных электронных приборах, таких как электронно-лучевые приборы, плоские дисплейные экраны, катодолюминесцентные источники света и так далее. Холодные катоды могут применяться, например, для инжекции зарядов в объем конденсированных сред при криогенных температурах, что используется для изучения свойств твердого и сверхтекучего гелия, жидкого водорода.

Известен токопроводящий слой углеродных нанотрубок на металлической подложке [Устройство для получения массивов углеродных нанотрубок на металлических подложках. Патент РФ на изобретение №2471706, опубл. 10.01.2013 г.] - прототип, состоящий из металлической подложки и слоя углеродных нанотрубок, осажденных методом дугового разряда. Основным недостатком конструкции-прототипа является сложность изготовления, т.к. для получения слоя углеродных нанотрубок на металлической подложке требуется устройство, состоящее из двух графитовых электродов, расположенных соосно и перемещаемых навстречу друг другу водоохлаждаемыми штоками, и снабженное скользящими графитовыми токоподводами, выполненными в виде колец, в которых установлены графитовые электроды, электроизолированные от штоков, причем на катоде установлены сменные вставки из электротехнической нелегированной стали, являющиеся подложками для осаждения слоев углеродных нанотрубок, закрепленные графитовыми винтами.

Задачей данного изобретения является создание простого в изготовлении холодного катода без снижения его эксплуатационных характеристик.

Эта задача решается в предлагаемом холодном катоде, содержащем слой углеродных нанотрубок и металлическую подложку, за счет того, что металлическая подложка пористая, а между металлической подложкой и слоем углеродных нанотрубок содержится слой углеродной сажи.

Такой холодный катод может быть изготовлен следующим образом: на пористую поверхность диска из нержавеющей стали механически наносят слой углеродной сажи, а затем сверху равномерно насыпают нанотрубки, которые механически втирают в слой сажи. Полученный холодный катод существенно проще в изготовлении по сравнению с прототипом, так как механическое нанесение слоев сажи и углеродных нанотрубок на металлическую подложку в указанной последовательности возможно непосредственно при комнатной температуре без использования защитных сред и специальных устройств. Использование сажи, как показали эксперименты, улучшает механический контакт нанотрубок с металлической поверхностью подложки. Такие структуры являются токопроводящими.

Фотография рабочей поверхности холодного катода (со стороны слоя нанотрубок), состоящего из пористой металлической подложки, слоя сажи и слоя углеродных нанотрубок, представлена на фиг. 1. На фиг. 2 схематично представлено поперечное сечение холодного катода, где 1 - пористая металлическая подложка; 2 - слой сажи; 3 - слой углеродных нанотрубок. Вольт-амперная характеристика такого холодного катода в сверхтекучем гелии представлена на фиг. 3, кривая 1. Для сравнения на фиг. 3, кривая 2, представлена вольт-амперная характеристика катода-прототипа. Из представленных графиков видно, что эксплуатационные характеристики изделий практически совпадают: напряжения начала эмиссии электронов имеют близкие значения, а максимальные токи эмиссии одинаковы.

Таким образом, полностью решена поставленная задача создания простого в изготовлении холодного катода без снижения его эксплуатационных характеристик.

Похожие патенты RU2572245C1

название год авторы номер документа
Способ изготовления холодного катода 2019
  • Борисенко Дмитрий Николаевич
  • Колесников Николай Николаевич
  • Левченко Александр Алексеевич
  • Ремизов Игорь Андреевич
  • Султанов Фархад Олегович
  • Умаев Сиражди Минкаилович
RU2717526C1
СПОСОБ НАНЕСЕНИЯ МАССИВОВ УГЛЕРОДНЫХ НАНОТРУБОК НА МЕТАЛЛИЧЕСКИЕ ПОДЛОЖКИ 2015
  • Борисенко Дмитрий Николаевич
  • Гартман Валентина Кирилловна
  • Колесников Николай Николаевич
  • Левченко Александр Алексеевич
RU2601335C1
Автоэмиссионный эмиттер с нанокристаллической алмазной пленкой 2021
  • Вихарев Анатолий Леонтьевич
  • Иванов Олег Андреевич
  • Яшанин Игорь Борисович
RU2763046C1
АВТОЭМИССИОННЫЙ КАТОД 2011
  • Бормашов Виталий Сергеевич
  • Волков Александр Павлович
  • Буга Сергей Геннадиевич
  • Попов Михаил Юрьевич
  • Перфилов Сергей Александрович
  • Лупарев Николай Васильевич
  • Кондрашов Кирилл Владимирович
  • Ломакин Роман Леонидович
  • Медведев Вячеслав Валерьевич
RU2504858C2
ПОВЫШЕНИЕ КРУТИЗНЫ ВАХ СИЛЬНОТОЧНЫХ ПОЛЕВЫХ ИСТОЧНИКОВ ЭЛЕКТРОНОВ 2021
  • Яфаров Андрей Равильевич
  • Золотых Дмитрий Николаевич
  • Яфаров Равиль Кяшшафович
RU2765635C1
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ МНОГООСТРИЙНЫХ АВТОЭМИССИОННЫХ КАТОДОВ 2023
  • Бокарев Валерий Павлович
  • Красников Геннадий Яковлевич
  • Теплов Георгий Сергеевич
  • Яфаров Андрей Равильевич
  • Яфаров Равиль Кяшшафович
RU2813858C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЦЫ МНОГООСТРИЙНОГО АВТОЭМИССИОННОГО КАТОДА НА МОНОКРИСТАЛЛИЧЕСКОМ КРЕМНИИ 2011
  • Яфаров Равиль Кяшшафович
RU2484548C1
ЯЧЕЙКА С АВТОЭЛЕКТРОННОЙ ЭМИССИЕЙ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2010
  • Горфинкель Борис Исаакович
  • Абаньшин Николай Павлович
  • Якунин Александр Николаевич
RU2446506C1
ЭМИТТЕР ЗАРЯЖЕННЫХ ЧАСТИЦ 1999
  • Каратецкий С.С.
  • Шредник В.Н.
  • Попов Е.О.
  • Коровин О.П.
RU2143766C1
МАТЕРИАЛ И СПОСОБ ИЗГОТОВЛЕНИЯ МНОГООСТРИЙНОГО АВТОЭМИССИОННОГО КАТОДА 2005
  • Яфаров Равиль Кяшшафович
  • Муллин Виктор Валентинович
  • Семенов Владимир Константинович
RU2309480C2

Иллюстрации к изобретению RU 2 572 245 C1

Реферат патента 2016 года ХОЛОДНЫЙ КАТОД

Изобретение относится к области получения углеродных наноструктур, а именно слоев углеродных нанотрубок на металлических подложках, применяемых в качестве холодных катодов (автоэлектронных источников эмиссии). Технический результат - создание простого в изготовлении холодного катода без снижения его эксплуатационных характеристик. Холодный катод содержит слой углеродных нанотрубок и металлическую подложку, которая выполнена пористой, а между металлической подложкой и слоем углеродных нанотрубок содержится слой углеродной сажи. Использование сажи улучшает механический контакт нанотрубок с металлической поверхностью подложки. 3 ил.

Формула изобретения RU 2 572 245 C1

Холодный катод, содержащий металлическую подложку и слой углеродных нанотрубок, отличающийся тем, что металлическая подложка пористая, а между металлической подложкой и слоем углеродных нанотрубок содержится слой углеродной сажи.

Документы, цитированные в отчете о поиске Патент 2016 года RU2572245C1

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МАССИВОВ УГЛЕРОДНЫХ НАНОТРУБОК НА МЕТАЛЛИЧЕСКИХ ПОДЛОЖКАХ 2011
  • Колесников Николай Николаевич
  • Борисенко Дмитрий Николаевич
  • Левченко Александр Алексеевич
RU2471706C1
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Хасаншин Ильшат Ядыкарович
RU2489350C2
WO 2005106086A1, 10.11.2005
US 6713519B2, 30.03.2004
US 2004108515A1, 10.06.2004.

RU 2 572 245 C1

Авторы

Левченко Александр Алексеевич

Котов Юрий Вячеславович

Борисенко Дмитрий Николаевич

Колесников Николай Николаевич

Даты

2016-01-10Публикация

2014-10-22Подача