СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АУКСИНОВ Российский патент 2016 года по МПК A01N43/38 A01N37/10 A01N25/26 B82B3/00 

Описание патента на изобретение RU2573983C2

Изобретение относится к области нанотехнологии, в частности к растениеводству.

Ранее были известны способы получения микрокапсул.

В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубл. 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом получения нанокапсул ауксинов, отличающийся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - ауксины при получении нанокапсул методом осаждения нерастворителем с применением 1,2-дихлорэтана в качестве осадителя.

Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием 1,2-дихлорэтана в качестве осадителя, а также использование каррагинана в качестве оболочки частиц и ауксины - в качестве ядра.

Результатом предлагаемого метода являются получение нанокапсул ауксинов.

ПРИМЕР 1. Получение нанокапсул индолилуксусной кислоты, соотношение ядро:оболочка 1:1

100 мг индолилуксусной кислоты добавляют небольшими порциями в суспензию каррагинана в бутаноле, содержащий указанного 100 мг полимера в присутствии 0,005 г препарата E472c (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании 1300 об/сек. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул индолилуксусной кислоты, соотношение ядро:оболочка 5:1

500 мг индолилуксусной кислоты добавляют небольшими порциями в суспензию каррагинана в бутаноле, содержащий указанного 100 мг полимера в присутствии 0,005 г препарата E472c при перемешивании 1300 об/сек. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул индолил-3-масляной кислоты, соотношение ядро:оболочка 1:1

100 мг индолил-3-масляной кислоты добавляют небольшими порциями в суспензию каррагинана в бутаноле, содержащий указанного 100 мг полимера в присутствии 0,005 г препарата E472c при перемешивании 1300 об/сек. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул индолил-3-масляной кислоты, соотношение ядро:оболочка 5:1

500 мг индолил-3-масляной кислоты добавляют небольшими порциями в суспензию каррагинана в бутаноле, содержащий указанного 100 мг полимера в присутствии 0,005 г препарата E472c при перемешивании 1300 об/сек. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул 1-нафтилуксусной кислоты, соотношение ядро:оболочка 1:1

100 мг 1-нафтилуксусной кислоты добавляют небольшими порциями в суспензию каррагинана в бутаноле, содержащий указанного 100 мг полимера в присутствии 0,005 г препарата E472c при перемешивании 1300 об/сек. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул 1-нафтилуксусной кислоты, соотношение ядро:оболочка 5:1

500 мг 1-нафтилуксусной кислоты добавляют небольшими порциями в суспензию каррагинана в бутаноле, содержащий указанного 100 мг полимера в присутствии 0,005 г препарата Е472с при перемешивании 1300 об/сек. Далее приливают 2 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 7. Определение размеров нанокапсул методом NTA.

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.

Похожие патенты RU2573983C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АУКСИНОВ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
RU2567338C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АУКСИНОВ В КАРРАГИНАНЕ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2567339C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ 2,4-ДИХЛОРФЕНОКСИУКСУСНОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Бойко Екатерина Евгеньевна
RU2560519C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ 2-ЦИС-4-ТРАНС-АБСЦИЗОВОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2564892C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ 2,4-ДИХЛОРФЕНОКСИУКСУСНОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2550920C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ГИББЕРЕЛЛИНОВОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2573982C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ГИББЕРЕЛЛИНОВОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2564893C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ 2-ЦИС-4-ТРАНС-АБСЦИЗОВОЙ КИСЛОТЫ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2559572C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ ВИТАМИНОВ В ГЕЛЛАНОВОЙ КАМЕДИ 2014
  • Кролевец Александр Александрович
  • Богачев Илья Александрович
  • Никитин Кирилл Сергеевич
  • Бойко Екатерина Евгеньевна
  • Медведева Яна Владимировна
RU2559577C1
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АУКСИНОВ 2014
  • Кролевец Александр Александрович
  • Навальнева Ирина Алексеевна
RU2575563C1

Иллюстрации к изобретению RU 2 573 983 C2

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АУКСИНОВ

Изобретение относится к способу получения нанокапсул ауксинов. Указанный способ характеризуется тем, что ауксин добавляют в суспензию каррагинана в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании, затем приливают 1,2-дихлорэтан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:1 или 5:1. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул ауксинов, а также увеличение их выхода по массе. 1 ил., 7 пр.

Формула изобретения RU 2 573 983 C2

Способ получения нанокапсул ауксинов, характеризующийся тем, что ауксин добавляют в суспензию каррагинана в бутаноле в присутствии сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты при перемешивании 1300 об/с, затем приливают 1,2-дихлорэтан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка в нанокапсулах составляет 1:1 или 5:1.

Документы, цитированные в отчете о поиске Патент 2016 года RU2573983C2

NAGAVARMA B
V
N
"Different techniques for preparation of polymeric nanoparticles", Asian Journal Pharm Clin Res, vol.5, suppl 3, 2012, стр.16-23
СОЛОДОВНИК В
Д
"Микрокапсулирование", 1980, стр.136-137
KR 2009104348 A 06.10.2009
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ 1997
  • Шестаков К.А.
  • Леви М.И.
  • Крейнгольд С.У.
  • Сизова Г.И.
  • Богданова Е.Н.
RU2134967C1
МУРОМЦЕВ Г
С
"Регуляторы роста растений", 1979, стр.7-9, 31-34.

RU 2 573 983 C2

Авторы

Кролевец Александр Александрович

Навальнева Ирина Алексеевна

Богачев Илья Александрович

Бойко Екатерина Евгеньевна

Даты

2016-01-27Публикация

2014-05-27Подача