СПОСОБ ПОЛУЧЕНИЯ СТАБИЛЬНОЙ ДИСПЕРСИИ ГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА В ВИДЕ ПОРОШКА Российский патент 2016 года по МПК B01F17/38 B01F17/00 B01F3/00 B82B3/00 

Описание патента на изобретение RU2574403C1

Изобретение реализует метод получения дисперсии геля поливинилового спирта, стабилизированной гидрофобизированным нанокремнеземом, имеющей вид и свойства порошка, устойчивой к циклам замерзания/оттаивания. Дисперсии воды (растворов) или льда (замороженных растворов) могут быть использованы в качестве модельных систем для исследования образования/разложения гидратов и в качестве строительного и теплоизоляционного материала в условиях холодного климата, а также в фармацевтике, косметологии, пищевой промышленности при транспортировке замороженных продуктов.

Водные дисперсии в виде порошка, например "сухая вода", получают методом диспергирования на воздухе гидрофобизированного нанокремнезема и воды/жидкости [1. Dieter Schutter, Franz-Theo Schmitz, Helmut Bruner Predominantly aqueous composition in a fluffy powdery rorm approximating powdered solids behavior and process for forming same. Patent. 1968]. Водные дисперсии, стабилизированные гидрофобизированным нанокремнеземом, нашли применение в фармацевтике, косметологии [2. Chemical Market Reporter, 17 May 2004, (Website: http://www.chemicalmarketreporter.com) & PPCJ, Polymers, Paint, Colour Journal, Jun 2004, 194 (4477), 30 & Jul 2004, 194 (4478), 34; Dieter Schutter, Franz-Theo Schmitz, Helmut Bruner Predominantly aqueous composition in a fluffy powdery rorm approximating powdered solids behavior and process for forming same. Patent. 1968], научных исследованиях, направленных на разработку способов применения сухой воды в качестве хладоагента [3. Barry D. Allan Dry water. Patent 4008170. 1977], увеличения скорости роста газовых гидратов [4. Wang W.X., Bray C.L., Adams D.J., Cooper A.I. Methane storage in dry water gas hydrates // J. Amer. Chem. Soc.. 2008. Vol. 130, No. 35. P. 11608-11609].

Известен способ получения устойчивой к оттаиванию/замерзанию стабильной дисперсии воды, стабилизированной гидрофобизированным кремнеземом, с использованием в качестве стабилизирующего агента водного раствора полисахарида [5. Carter В.О., Wang W.X., Bray C.L., Adams D.J., Cooper A.I. // Gas Storage in "Dry Water" and "Dry Gel" Clathrates, Langmuir. 2010. V. 26. №5. P. 3186-3193].

Для получения дисперсии воды, гидрофобизированным нанокремнеземом, расходуется значительное количество полимера (20 весовых %) и требуются большие энергетические затраты для диспергирования высоковязкого раствора полимера.

Известно, что дисперсия воды, имеющая вид порошка, может быть получена из замороженного раствора гелеобразователя (поливинилового спирта, агара и ряда других) и гидрофобизированного нанокремнезема [6. Yoichiro Т., Yuriko Т., Shinji К. Water-containing powder composition, process for producing the same, and cosmetic preparation containing the powder composition. EPatent No 1206928. Filed 2002. C1. A61K 7/00. Appl. No 00953468.6. Filed 2000]. При этом замороженный гель диспергируют при разрушающей шоковой заморозке от -80 до -120°C.

Известный способ является экономически затратным и технологически сложно осуществимым. Это обусловлено тем, что необходимо использовать жидкий азот и специальные установки с охлаждающими контурами. Способ связан с ужесточением мер по технике безопасности. Кроме того, вопросы устойчивости этих систем к циклам замерзания/оттаивания не рассмотрены в работе и вызывают сомнения.

Задачей, стоящей перед изобретением, является снижение энергетических и экономических затрат при получении устойчивой к оттаиванию и замерзанию порошковой водной дисперсии, а также повышение комфортности реализации способа.

Поставленная задача решается тем, что для стабилизации дисперсии воды, гидрофобизированным нанокремнеземом, в качестве стабилизирующего агента используется поливиниловый спирт (ГОСТ 10779-78), приготовление стабильной порошкообразной дисперсии осуществляется при отрицательной температуре ниже 0°C диспергированием на воздухе льда, армированного ПВС, в присутствии гидрофобизированного нанокремнезема. При оттаивании формируется стабильная водная дисперсия в виде порошка, устойчивая к циклам замерзания/оттаивания.

В качестве критерия комфортной отрицательной температуры следует брать температуру, не ниже нижней критической температуры работы мельницы, на которой готовят дисперсию.

Для пояснения изобретения на фиг. 1 показаны дисперсные системы с различным содержанием аэросила, а на фиг. 2 - дисперсные системы после цикла замораживание-оттаивание.

Способ осуществляется следующим образом.

Готовят водный раствор поливинилового спирта.

Для приготовления раствора поливинилового спирта используется порошок марки 16/10, изготовленный в соответствии с ГОСТ 10779-78.

Для приготовления пятипроцентного раствора поливинилового спирта навеску 5 г ПВС заливают 94 граммами горячей воды с температурой 70-90°C, одновременно перемешивают до получения однородного раствора. Далее продолжая перемешивание, для усиления гелеобразования добавляют маленькими порциями борную кислоту в количестве 1 весового % (патент РФ №238222138). Все это производят на паровой бане. Продолжают перемешивать до тех пор, пока не получается жидкий мутноватый гелеобразный раствор. Вязкость этого раствора не превышает 40 мм2/с.

Полученный водный раствор ПВС замораживали и выдерживали в замороженном состоянии с соблюдением режима криоструктирирования (Лозинский В.И. Криотропное гелеобразование раствора поливинилового спирта // Успехи химии, 1998. Выпуск 67. Номер 7. Страницы 641-655). После замораживания раствора ПВС получаем лед, армированный ПВС. Далее осуществляется приготовление порошкообразной дисперсной системы, гидрофобизированной нанокремнеземом, в холодильной камере при отрицательной температуре изо льда, армированного ПВС, и гидрофобизированного нанокремнезема. Приготовление дисперсной системы может осуществляться при отрицательной температуре ниже 0°C. Выбор температуры обусловлен тем, что при температуре выше 0°C происходит плавление льда, а нижняя критическая температура, при которой осуществляется приготовление дисперсии, выше температуры разрушающей заморозки, что обеспечивает возможность работы на обычном стандартном оборудовании (измельчающем устройстве). Наиболее комфортная температура от -5 до -20°C.

Лед, армированный ПВС, и гидрофобизированный нанокремнезем помещаются в емкость измельчающего устройтсва. В качестве нанокремнезема используется гидрофобизированный аэросил марки R 202, размер частиц которого порядка 10-14 нм и плотность при нормальном уплотнении составляет примерно 50 г/л. В результате диспергирования в емкости измельчающего устройства при отрицательной температуре получается порошок, в котором дисперсной фазой являются микрочастицы льда, армированного ПВС, дисперсионной средой - гидрофобизированный нанокремнезем аэросил R 202. Использование льда, армированного ПВС, при перемешивании его с гидрофобизированным аэросилом на большой скорости (порядка 18000 об/мин) способствует формированию порошкообразной дисперсной системы, в которой микронные гранулы льда микрокапсулированы гидрофобизированным нанокремнеземом.

Стабильность и устойчивость к циклам замерзания/оттаивания полученной порошкообразной водной дисперсной системы оценивалась визуально, размер частиц дисперсной фазы определяется по снимкам, полученным после оттаивания проб водной дисперсной системы с помощью цифрового микроскопа Motic (Фиг. 1). Для определения устойчивости проб водной порошкообразной дисперсной системы проведены циклы замерзания/оттаивания. Стабильной и устойчивой к циклам замерзания/оттаивания считалась не расслоившаяся проба водной порошкообразной дисперсной системы, то есть без явного выделения фазы жидкости, и сохраняющая свойство сыпучести.

Системы, приготовленные изо льда, армированного ПВС, и гидрофобизированного нанокремнезема (в количестве от 3 до 8 мас. %), имеют вид порошка после их оттаивания. Замерзание/оттаивание систем с содержанием аэросила менее 8 мас. % приводит к их расслоению на жидкую и порошкообразную фазы (Фиг. 2а, б). Содержание воды в верхнем слое системы лед (армированный ПВС)/3 мас. % аэросил (Фиг. 2а) равно 12,4 мас. %, в нижнем - 93,4 мас % (в порошкообразной системе после оттаивания содержание воды 91 мас. %). Содержание воды в верхнем слое системы лед (армированный ПВС)/5 мас. % аэросил (Фиг. 2б) равно 82,5 мас. % (в порошкообразной системе после оттаивания содержание воды 89 мас. %). Система лед (армированный ПВС)/8 мас. % аэросил не расслаивается после цикла замораживания-оттаивания, содержание воды сохраняется равным 86 мас. % (Фиг. 2в).

Для сравнения получены порошкообразные дисперсии льда, стабилизированные аэросилом, в которых отсутствовал поливиниловый спирт. Эти дисперсии приготовлены тем же способом, что и дисперсии льда, армированного ПВС. После оттаивания дисперсии льда имели вид порошка. Однако после замораживания-оттаивания все дисперсии расслоились. В образцах отчетливо видно две выделившиеся фазы вода и порошок с содержанием воды 90,6 мас. %, 89,4 мас. % и 86,8 мас. % вместо исходных для порошкообразных систем 97 мас. %, 95 мас. % и 92 мас. % воды соответственно (Фиг. 2г, д, е).

Дисперсия, в которой жидкость микрокапсулирована гидрофобизированным нанокремнеземом, сохраняет мелкодисперсную структуру и порошкообразный вид после проведения нескольких циклов замерзания/оттаивания при использовании не менее 5 мас % ПВС в растворе и не менее 8 мас % гидрофобизированного кремнезема аэросила в процессе приготовления системы.

Предлагаемый способ позволяет получить стабильную дисперсию воды, устойчивую к замерзанию/оттаиванию, и снизить энергетические и экономические затраты на приготовление дисперсий воды (льда).

Похожие патенты RU2574403C1

название год авторы номер документа
СПОСОБ СТАБИЛИЗАЦИИ ВОДНОЙ ДИСПЕРСИИ 2011
  • Мельников Владимир Павлович
  • Поденко Лев Степанович
  • Нестеров Анатолий Николаевич
  • Молокитина Надежда Сергеевна
  • Шаламов Вячеслав Викторович
RU2458733C1
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОЙ ИСКУССТВЕННОЙ НАСАДКИ 1992
  • Зубов А.Л.
  • Лозинский В.И.
RU2054254C1
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ МАСЛОНАПОЛНЕННОГО КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА, СПОСОБ ПОЛУЧЕНИЯ УКАЗАННОГО КРИОГЕЛЯ И МАСЛОНАПОЛНЕННЫЙ КРИОГЕЛЬ 2006
  • Лозинский Владимир Иосифович
  • Подорожко Елена Анатольевна
RU2326908C1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА 2003
  • Лозинский В.И.
  • Дамшкалн Л.Г.
RU2252945C1
Способ получения макропористой пленки для регенеративной медицины на основе L-цистеина, нитрата серебра и поливинилового спирта 2020
  • Вишневецкий Дмитрий Викторович
  • Межеумов Игорь Николаевич
  • Иванова Александра Ивановна
  • Хижняк Светлана Дмитриевна
  • Пахомов Павел Михайлович
RU2746882C1
УПРУГОДЕФОРМИРУЕМОЕ ГЕЛЕОБРАЗНОЕ ТОПЛИВО 2022
  • Глушков Дмитрий Олегович
  • Нигай Александр Герасимович
  • Паушкина Кристина Константиновна
RU2794674C1
НАПОЛНЕННЫЙ ЧАСТИЦАМИ СОРБЕНТА МАКРОПОРИСТЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ, КОМПОЗИЦИЯ ДЛЯ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ 2015
  • Лозинский Владимир Иосифович
  • Рябев Андрей Николаевич
  • Павлова Людмила Александровна
  • Цурюпа Мария Петровна
  • Блинникова Зинаида Константиновна
  • Даванков Вадим Александрович
RU2601605C1
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА И СПОСОБ ПОЛУЧЕНИЯ КРИОГЕЛЯ 2001
  • Лозинский В.И.
  • Савина И.Н.
  • Даванков В.А.
RU2190644C1
Способ получения теплоаккумулирующего материала 2022
  • Семенов Антон Павлович
  • Стопорев Андрей Сергеевич
  • Медгазиев Раис Иман-Мадиевич
  • Копицын Дмитрий Сергеевич
  • Воронин Денис Викторович
  • Петрова Дарья Андреевна
  • Аникушин Борис Михайлович
  • Винокуров Владимир Арнольдович
RU2805415C1
СПОСОБ ФОРМОВАНИЯ КРИОГЕЛЕЙ ПОЛИВИНИЛОВОГО СПИРТА 2014
  • Лозинский Владимир Иосифович
  • Подорожко Елена Анатольевна
RU2561120C1

Иллюстрации к изобретению RU 2 574 403 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ СТАБИЛЬНОЙ ДИСПЕРСИИ ГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА В ВИДЕ ПОРОШКА

Изобретение относится к способу получения стабильной дисперсии геля поливинилового спирта в виде порошка, стабилизированной гидрофобизированным нанокремнеземом, устойчивой к циклам оттаивания и замерзания. Способ включает смешивание воды с гелеобразующей добавкой - поливиниловым спиртом и диспергирование замороженного геля в присутствии гидрофобизированного нанокремнезема. Замороженный гель измельчают при отрицательной температуре, выше температуры разрушающей заморозки, обеспечивая возможность работы обычной стандартной мельницы, на которой готовят дисперсию. Технический результат - исключение необходимости применения шоковой заморозки, снижение энергетических и экономических затрат на приготовление дисперсии. 2 ил., 2 табл.

Формула изобретения RU 2 574 403 C1

Способ получения стабильной дисперсии геля поливинилового спирта в виде порошка, включающий смешивание воды с гелеобразующей добавкой - поливиниловым спиртом и диспергирование замороженного геля в присутствии гидрофобизированного нанокремнезема, отличающийся тем, что для получения стабильной и устойчивой к замерзанию/оттаиванию дисперсии замороженный гель измельчают при отрицательной температуре ниже 0°C и выше температуры разрушающей заморозки.

Документы, цитированные в отчете о поиске Патент 2016 года RU2574403C1

СПОСОБ ДИСПЕРГИРОВАНИЯ ЛЬДА 2011
  • Мельников Владимир Павлович
  • Поденко Лев Степанович
  • Нестеров Анатолий Николаевич
  • Молокитина Надежда Сергеевна
  • Шаламов Вячеслав Викторович
RU2473850C1
СПОСОБ СТАБИЛИЗАЦИИ ВОДНОЙ ДИСПЕРСИИ 2011
  • Мельников Владимир Павлович
  • Поденко Лев Степанович
  • Нестеров Анатолий Николаевич
  • Молокитина Надежда Сергеевна
  • Шаламов Вячеслав Викторович
RU2458733C1
СТАБИЛИЗИРОВАННЫЕ ПОЛИВИНИЛОВЫМ СПИРТОМ РЕДИСПЕРГИРУЕМЫЕ ПОРОШКИ С РАЗЖИЖАЮЩИМИ СВОЙСТВАМИ 2004
  • Херцшель Райнхард
  • Бастельбергер Томас
  • Дитрих Ульф
  • Хоффманн Армин
RU2287537C2
Yoichiro T., Yuriko T., Shinji K
Water-containing powder composition, process for producing the same, and cosmetic preparation containing the powder composition
Тиристорно-контакторный блок с цифровым блоком управления 1983
  • Пучко Владимир Наумович
  • Збарский Леонид Владимирович
  • Гапон Владимир Петрович
SU1206928A1
Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
Cl
Устройство для сортировки каменного угля 1921
  • Фоняков А.П.
SU61A1
Appl
Устройство для измерения параметров источников шума 1981
  • Гордиенко Елена Львовна
  • Захаров Лев Николаевич
  • Ильин Сергей Аркадьевич
  • Ильичев Виктор Иванович
  • Слуцков Александр Александрович
  • Топоровский Феликс Авраамович
  • Пенкин Юрий Васильевич
  • Щуров Владимир Александрович
SU953468A1

RU 2 574 403 C1

Авторы

Мельников Владимир Павлович

Поденко Лев Степанович

Нестеров Анатолий Николаевич

Молокитина Надежда Сергеевна

Драчук Андрей Олегович

Даты

2016-02-10Публикация

2014-10-20Подача