Изобретение реализует метод получения дисперсии геля поливинилового спирта, стабилизированной гидрофобизированным нанокремнеземом, имеющей вид и свойства порошка, устойчивой к циклам замерзания/оттаивания. Дисперсии воды (растворов) или льда (замороженных растворов) могут быть использованы в качестве модельных систем для исследования образования/разложения гидратов и в качестве строительного и теплоизоляционного материала в условиях холодного климата, а также в фармацевтике, косметологии, пищевой промышленности при транспортировке замороженных продуктов.
Водные дисперсии в виде порошка, например "сухая вода", получают методом диспергирования на воздухе гидрофобизированного нанокремнезема и воды/жидкости [1. Dieter Schutter, Franz-Theo Schmitz, Helmut Bruner Predominantly aqueous composition in a fluffy powdery rorm approximating powdered solids behavior and process for forming same. Patent. 1968]. Водные дисперсии, стабилизированные гидрофобизированным нанокремнеземом, нашли применение в фармацевтике, косметологии [2. Chemical Market Reporter, 17 May 2004, (Website: http://www.chemicalmarketreporter.com) & PPCJ, Polymers, Paint, Colour Journal, Jun 2004, 194 (4477), 30 & Jul 2004, 194 (4478), 34; Dieter Schutter, Franz-Theo Schmitz, Helmut Bruner Predominantly aqueous composition in a fluffy powdery rorm approximating powdered solids behavior and process for forming same. Patent. 1968], научных исследованиях, направленных на разработку способов применения сухой воды в качестве хладоагента [3. Barry D. Allan Dry water. Patent 4008170. 1977], увеличения скорости роста газовых гидратов [4. Wang W.X., Bray C.L., Adams D.J., Cooper A.I. Methane storage in dry water gas hydrates // J. Amer. Chem. Soc.. 2008. Vol. 130, No. 35. P. 11608-11609].
Известен способ получения устойчивой к оттаиванию/замерзанию стабильной дисперсии воды, стабилизированной гидрофобизированным кремнеземом, с использованием в качестве стабилизирующего агента водного раствора полисахарида [5. Carter В.О., Wang W.X., Bray C.L., Adams D.J., Cooper A.I. // Gas Storage in "Dry Water" and "Dry Gel" Clathrates, Langmuir. 2010. V. 26. №5. P. 3186-3193].
Для получения дисперсии воды, гидрофобизированным нанокремнеземом, расходуется значительное количество полимера (20 весовых %) и требуются большие энергетические затраты для диспергирования высоковязкого раствора полимера.
Известно, что дисперсия воды, имеющая вид порошка, может быть получена из замороженного раствора гелеобразователя (поливинилового спирта, агара и ряда других) и гидрофобизированного нанокремнезема [6. Yoichiro Т., Yuriko Т., Shinji К. Water-containing powder composition, process for producing the same, and cosmetic preparation containing the powder composition. EPatent No 1206928. Filed 2002. C1. A61K 7/00. Appl. No 00953468.6. Filed 2000]. При этом замороженный гель диспергируют при разрушающей шоковой заморозке от -80 до -120°C.
Известный способ является экономически затратным и технологически сложно осуществимым. Это обусловлено тем, что необходимо использовать жидкий азот и специальные установки с охлаждающими контурами. Способ связан с ужесточением мер по технике безопасности. Кроме того, вопросы устойчивости этих систем к циклам замерзания/оттаивания не рассмотрены в работе и вызывают сомнения.
Задачей, стоящей перед изобретением, является снижение энергетических и экономических затрат при получении устойчивой к оттаиванию и замерзанию порошковой водной дисперсии, а также повышение комфортности реализации способа.
Поставленная задача решается тем, что для стабилизации дисперсии воды, гидрофобизированным нанокремнеземом, в качестве стабилизирующего агента используется поливиниловый спирт (ГОСТ 10779-78), приготовление стабильной порошкообразной дисперсии осуществляется при отрицательной температуре ниже 0°C диспергированием на воздухе льда, армированного ПВС, в присутствии гидрофобизированного нанокремнезема. При оттаивании формируется стабильная водная дисперсия в виде порошка, устойчивая к циклам замерзания/оттаивания.
В качестве критерия комфортной отрицательной температуры следует брать температуру, не ниже нижней критической температуры работы мельницы, на которой готовят дисперсию.
Для пояснения изобретения на фиг. 1 показаны дисперсные системы с различным содержанием аэросила, а на фиг. 2 - дисперсные системы после цикла замораживание-оттаивание.
Способ осуществляется следующим образом.
Готовят водный раствор поливинилового спирта.
Для приготовления раствора поливинилового спирта используется порошок марки 16/10, изготовленный в соответствии с ГОСТ 10779-78.
Для приготовления пятипроцентного раствора поливинилового спирта навеску 5 г ПВС заливают 94 граммами горячей воды с температурой 70-90°C, одновременно перемешивают до получения однородного раствора. Далее продолжая перемешивание, для усиления гелеобразования добавляют маленькими порциями борную кислоту в количестве 1 весового % (патент РФ №238222138). Все это производят на паровой бане. Продолжают перемешивать до тех пор, пока не получается жидкий мутноватый гелеобразный раствор. Вязкость этого раствора не превышает 40 мм2/с.
Полученный водный раствор ПВС замораживали и выдерживали в замороженном состоянии с соблюдением режима криоструктирирования (Лозинский В.И. Криотропное гелеобразование раствора поливинилового спирта // Успехи химии, 1998. Выпуск 67. Номер 7. Страницы 641-655). После замораживания раствора ПВС получаем лед, армированный ПВС. Далее осуществляется приготовление порошкообразной дисперсной системы, гидрофобизированной нанокремнеземом, в холодильной камере при отрицательной температуре изо льда, армированного ПВС, и гидрофобизированного нанокремнезема. Приготовление дисперсной системы может осуществляться при отрицательной температуре ниже 0°C. Выбор температуры обусловлен тем, что при температуре выше 0°C происходит плавление льда, а нижняя критическая температура, при которой осуществляется приготовление дисперсии, выше температуры разрушающей заморозки, что обеспечивает возможность работы на обычном стандартном оборудовании (измельчающем устройстве). Наиболее комфортная температура от -5 до -20°C.
Лед, армированный ПВС, и гидрофобизированный нанокремнезем помещаются в емкость измельчающего устройтсва. В качестве нанокремнезема используется гидрофобизированный аэросил марки R 202, размер частиц которого порядка 10-14 нм и плотность при нормальном уплотнении составляет примерно 50 г/л. В результате диспергирования в емкости измельчающего устройства при отрицательной температуре получается порошок, в котором дисперсной фазой являются микрочастицы льда, армированного ПВС, дисперсионной средой - гидрофобизированный нанокремнезем аэросил R 202. Использование льда, армированного ПВС, при перемешивании его с гидрофобизированным аэросилом на большой скорости (порядка 18000 об/мин) способствует формированию порошкообразной дисперсной системы, в которой микронные гранулы льда микрокапсулированы гидрофобизированным нанокремнеземом.
Стабильность и устойчивость к циклам замерзания/оттаивания полученной порошкообразной водной дисперсной системы оценивалась визуально, размер частиц дисперсной фазы определяется по снимкам, полученным после оттаивания проб водной дисперсной системы с помощью цифрового микроскопа Motic (Фиг. 1). Для определения устойчивости проб водной порошкообразной дисперсной системы проведены циклы замерзания/оттаивания. Стабильной и устойчивой к циклам замерзания/оттаивания считалась не расслоившаяся проба водной порошкообразной дисперсной системы, то есть без явного выделения фазы жидкости, и сохраняющая свойство сыпучести.
Системы, приготовленные изо льда, армированного ПВС, и гидрофобизированного нанокремнезема (в количестве от 3 до 8 мас. %), имеют вид порошка после их оттаивания. Замерзание/оттаивание систем с содержанием аэросила менее 8 мас. % приводит к их расслоению на жидкую и порошкообразную фазы (Фиг. 2а, б). Содержание воды в верхнем слое системы лед (армированный ПВС)/3 мас. % аэросил (Фиг. 2а) равно 12,4 мас. %, в нижнем - 93,4 мас % (в порошкообразной системе после оттаивания содержание воды 91 мас. %). Содержание воды в верхнем слое системы лед (армированный ПВС)/5 мас. % аэросил (Фиг. 2б) равно 82,5 мас. % (в порошкообразной системе после оттаивания содержание воды 89 мас. %). Система лед (армированный ПВС)/8 мас. % аэросил не расслаивается после цикла замораживания-оттаивания, содержание воды сохраняется равным 86 мас. % (Фиг. 2в).
Для сравнения получены порошкообразные дисперсии льда, стабилизированные аэросилом, в которых отсутствовал поливиниловый спирт. Эти дисперсии приготовлены тем же способом, что и дисперсии льда, армированного ПВС. После оттаивания дисперсии льда имели вид порошка. Однако после замораживания-оттаивания все дисперсии расслоились. В образцах отчетливо видно две выделившиеся фазы вода и порошок с содержанием воды 90,6 мас. %, 89,4 мас. % и 86,8 мас. % вместо исходных для порошкообразных систем 97 мас. %, 95 мас. % и 92 мас. % воды соответственно (Фиг. 2г, д, е).
Дисперсия, в которой жидкость микрокапсулирована гидрофобизированным нанокремнеземом, сохраняет мелкодисперсную структуру и порошкообразный вид после проведения нескольких циклов замерзания/оттаивания при использовании не менее 5 мас % ПВС в растворе и не менее 8 мас % гидрофобизированного кремнезема аэросила в процессе приготовления системы.
Предлагаемый способ позволяет получить стабильную дисперсию воды, устойчивую к замерзанию/оттаиванию, и снизить энергетические и экономические затраты на приготовление дисперсий воды (льда).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ СТАБИЛИЗАЦИИ ВОДНОЙ ДИСПЕРСИИ | 2011 |
|
RU2458733C1 |
СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОЙ ИСКУССТВЕННОЙ НАСАДКИ | 1992 |
|
RU2054254C1 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ МАСЛОНАПОЛНЕННОГО КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА, СПОСОБ ПОЛУЧЕНИЯ УКАЗАННОГО КРИОГЕЛЯ И МАСЛОНАПОЛНЕННЫЙ КРИОГЕЛЬ | 2006 |
|
RU2326908C1 |
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА | 2003 |
|
RU2252945C1 |
Способ получения макропористой пленки для регенеративной медицины на основе L-цистеина, нитрата серебра и поливинилового спирта | 2020 |
|
RU2746882C1 |
УПРУГОДЕФОРМИРУЕМОЕ ГЕЛЕОБРАЗНОЕ ТОПЛИВО | 2022 |
|
RU2794674C1 |
НАПОЛНЕННЫЙ ЧАСТИЦАМИ СОРБЕНТА МАКРОПОРИСТЫЙ ПОЛИМЕРНЫЙ МАТЕРИАЛ, КОМПОЗИЦИЯ ДЛЯ ЕГО ПОЛУЧЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ | 2015 |
|
RU2601605C1 |
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КРИОГЕЛЯ ПОЛИВИНИЛОВОГО СПИРТА И СПОСОБ ПОЛУЧЕНИЯ КРИОГЕЛЯ | 2001 |
|
RU2190644C1 |
Способ получения теплоаккумулирующего материала | 2022 |
|
RU2805415C1 |
СПОСОБ ФОРМОВАНИЯ КРИОГЕЛЕЙ ПОЛИВИНИЛОВОГО СПИРТА | 2014 |
|
RU2561120C1 |
Изобретение относится к способу получения стабильной дисперсии геля поливинилового спирта в виде порошка, стабилизированной гидрофобизированным нанокремнеземом, устойчивой к циклам оттаивания и замерзания. Способ включает смешивание воды с гелеобразующей добавкой - поливиниловым спиртом и диспергирование замороженного геля в присутствии гидрофобизированного нанокремнезема. Замороженный гель измельчают при отрицательной температуре, выше температуры разрушающей заморозки, обеспечивая возможность работы обычной стандартной мельницы, на которой готовят дисперсию. Технический результат - исключение необходимости применения шоковой заморозки, снижение энергетических и экономических затрат на приготовление дисперсии. 2 ил., 2 табл.
Способ получения стабильной дисперсии геля поливинилового спирта в виде порошка, включающий смешивание воды с гелеобразующей добавкой - поливиниловым спиртом и диспергирование замороженного геля в присутствии гидрофобизированного нанокремнезема, отличающийся тем, что для получения стабильной и устойчивой к замерзанию/оттаиванию дисперсии замороженный гель измельчают при отрицательной температуре ниже 0°C и выше температуры разрушающей заморозки.
СПОСОБ ДИСПЕРГИРОВАНИЯ ЛЬДА | 2011 |
|
RU2473850C1 |
СПОСОБ СТАБИЛИЗАЦИИ ВОДНОЙ ДИСПЕРСИИ | 2011 |
|
RU2458733C1 |
СТАБИЛИЗИРОВАННЫЕ ПОЛИВИНИЛОВЫМ СПИРТОМ РЕДИСПЕРГИРУЕМЫЕ ПОРОШКИ С РАЗЖИЖАЮЩИМИ СВОЙСТВАМИ | 2004 |
|
RU2287537C2 |
Yoichiro T., Yuriko T., Shinji K | |||
Water-containing powder composition, process for producing the same, and cosmetic preparation containing the powder composition | |||
Тиристорно-контакторный блок с цифровым блоком управления | 1983 |
|
SU1206928A1 |
Топчак-трактор для канатной вспашки | 1923 |
|
SU2002A1 |
Cl | |||
Устройство для сортировки каменного угля | 1921 |
|
SU61A1 |
Appl | |||
Устройство для измерения параметров источников шума | 1981 |
|
SU953468A1 |
Авторы
Даты
2016-02-10—Публикация
2014-10-20—Подача