БИТУМНО-ПОЛИМЕРНАЯ МАСТИКА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ Российский патент 2016 года по МПК C08L95/00 

Описание патента на изобретение RU2580130C2

Изобретение относится к области производства битумно-полимерных строительных и гидроизоляционных материалов, используемых для гидроизоляционной защиты бетонных, кирпичных, надземных и подземных сооружений, а также может использоваться в гражданском, аэродромном и дорожном строительстве для заливки швов и трещин, дорожных покрытий и конструкций.

Известна битумно-полимерная мастика [RU №2192578, МПК7 F16L 58/12, 2002 г.], включающая совокупность дорожных и строительных битумов, полимер, индустриальное масло в качестве пластификатора и каучук в качестве модификатора. В состав мастики дополнительно могут быть введены катионно-активные добавки.

Однако данная мастика включает в свой состав высокое содержание дорогостоящих компонентов, к числу которых относятся: полимер, каучук и катионно-активные добавки, которые дополнительно могут содержаться в мастике. Это способствует значительному удорожанию готовой продукции.

Известен способ получения битумно-полимерной мастики [RU №2016019, МПК7 C08L 95/00, С08К 3/24, 1994 г.], включающий подачу в смеситель битума, его нагрев и введение в него при постоянном перемешивании тонкодисперсного наполнителя и полимерной добавки - термоэластопласта. Способ получения мастики заключается в поэтапном введении ингредиентов и перемешивании.

Недостатком известного способа является усложнение технологии приготовления мастики за счет включения в нее большого количества дополнительных операций, в соответствии с заявленным в аналоге решением процесс приготовления состоит из следующих этапов: подача в турбосмеситель битума, введение в него при постоянном перемешивании части полимерной добавки и тонкодисперсного наполнителя, их перемешивание; затем введение в полученную смесь остатка полимерной добавки и перемешивание в течение 40-60 мин, с последующим введением остатка наполнителя и окончательным перемешиванием. Многократный процесс дозирования компонентов значительно увеличивает погрешность содержания используемых компонентов: полимерной добавки и тонкодисперсного наполнителя.

Наиболее близким техническим решением к предлагаемому изобретению является битумно-резиновая мастика [RU №2426754, МПК7 C08L 95/00, 2011 г.], включающая: дорожный битум БНД 60/90, резиновую крошку и пластифицирующую добавку из строительной извести и минерального порошка, полимер из резинового термоэластопласта РТЭП при следующем соотношении компонентов, мас:

Битум БНД 60/90 68-78 Резиновая крошка 9-13 Полимер 5-7 Строительная известь : минеральный порошок 3:7 8-12

Способ приготовления заключается в том, что резиновый термоэластопласт РТЭП вносился в лабораторный смеситель совместно с резиновой крошкой в разогретый до 170°С битум. Полученная смесь перемешивалась в течение 1 часа. Далее вводился минеральный наполнитель, состоящий из строительной извести и минерального порошка, после чего приготавливаемая мастика перемешивалась дополнительно еще 20 минут.

Недостатком прототипа в части вещества является то, что в составе используют известь, которая при хранении может комковаться и агрегировать, что вызывает трудности в ее введении и равномерном перемешивании. Также известь склонна к гидратации, что усложняет ее подачу в битумный котел. Использование в составе пластифицирующей добавки извести, за счет продолжающихся процессов гидратации, сопровождающихся процессами кристаллизации, приводит к значительному уменьшению растяжимости и эластичности. Рассматриваемый прототип предлагается использовать в качестве мастики для ремонта дорожных и аэродромных покрытий, для заливки швов и трещин строительных конструкций и дорожных одежд, однако заявленные показатели являются недостаточными для эффективной и долгосрочной работы мастики в данных конструктивах.

Недостатком в части способа приготовления является сокращение времени приготовления мастики максимально до двух часов при температурах не выше 170°С. За это время при указанной температуре невозможно достичь полного растворения и распределения РТЭП в объеме вяжущего. Кроме того, в составе РТЭП в качестве наполнителей содержатся тонкодисперсные частицы карбоната кальция и серы. Совокупность рецептурных и технологических факторов не позволяют получить мастику с комплексными высокими показателями теплостойкости, растяжимости и эластичности.

Задачей заявляемого изобретения является получение эффективной мастики с высокими показателями эксплуатационной надежности, которые обеспечивают эффективную долгосрочную работу конструктива при использовании предлагаемой полимерно-битумной мастики.

Поставленная задача решается путем достижения следующих технических результатов: повышение теплостойкости композиции, растяжимости и ее эластичности.

Указанный технический результат достигается за счет того, что битумно-полимерная мастика включает в свой состав дорожный битум, в качестве полимера содержит дивинил стирольный термоэластопласт (ТЭП), в качестве пластификатора - индустриальное масло, резиновую крошку, в качестве минерального наполнителя - дисперсный шунгит и наномодификатор, в качестве которого использовали одностенные (ОУНТ) или многостенные (МУНТ) углеродные нанотрубки, при следующем соотношении компонентов, мас. %,

Наномодификатор 1·10-3-6·10-3 Индустриальное масло 2-9,4 Дивинилстирольный ТЭП 2,5-3,5 Резиновая крошка 3-5 Минеральный наполнитель шунгит 7 Битум остальное

Способ приготовления битумно-полимерной мастики включает нагрев битума до 160°С, введение в него при постоянном перемешивании полимера и резиновой крошки до полного растворения полимера, последующее смешение с минеральным наполнителем до однородного состояния мастики. Дополнительно во время нагрева битума модифицируют пластификатор, путем введения в него наномодификатора и ультразвукового диспергирования полученного раствора, после чего наномодифицированный пластификатор вводят в разогретый битум совместно с полимером и резиновой крошкой.

Пример. Для приготовления полимерно-битумной мастики используют битум БНД 60/90, полимер дивинилстирольный ТЭП ДСТ-30Р-01, пластификатор индустриальное масло И-40, резиновую крошку, наполнитель - дисперсный шунгит, наномодификатор ОУНТ или МУНТ. Ряд возможных составов мастик представлен в таблице 1

Приготовление полимерно-битумных мастик осуществлялось следующим способом: в разогретый до 160°С битум, при постоянном перемешивании, совместно вводились предварительно приготовленный наномодифицированный пластификатор, состоящий из пластификатора и углеродных нанообъектов, дивинил-стирольный термоэластопласт и резиновая крошка, процентное соотношение компонентов представлено в таблице 1. Приготовление наномодифицированного пластификатора осуществлялось следующим способом: в предварительно нагретый до 90-100°С пластификатор вводились ОУНТ (МУНТ), затем производилось диспергирование в течение 7-15 минут в ультразвуковом диспергаторе. Полученная смесь перемешивалась в лопастной мешалке IKA V6000 в течение 1 часа. Затем вводился минеральный наполнитель шунгит, после чего приготавливаемая мастика перемешивалась еще 40 минут. Полученные образцы мастики испытывали на физико-механические показатели, результаты испытания которых представлены в таблице 2.

Предлагаемое нами техническое решение позволило получить мастику с высокими физико-механическими показателями. По сравнению с прототипом полученные образцы полимерно-битумной мастики обладают повышенными свойствами: теплостойкостью, растяжимостью и эластичностью. Наличие пластификатора в битумно-полимерной мастике необходимо как среда, в которой распределяется наномодификатор при помощи ультразвукового диспергирования. Полученный наномодифицированный пластификатор вводится при постоянном перемешивании в разогретый битум, затем добавляется резиновая крошка и полимер. Количество наномодифицированного пластификатора зависит от вязкости исходного битума, а также свойств, которыми должен характеризоваться готовый продукт. При содержании пластификатора менее 2% достичь равномерного распределения минимального количества (1·10-3) углеродных нанотрубок не представляется возможным. С увеличением вязкости битума и содержания нанотрубок необходимо увеличение пластификатора в композиции.

После введения указанных компонентов происходит комплексное армирование мастики резиновой крошкой, полимером и нанокомпонентом (ОУНТ или МУНТ). При содержании наномодификатора в указанном интервале происходит сближение частиц в битумно-полимерно-резиновой матрице. В этом случае приповерхностные структурирующие слои, образующиеся вокруг нанообъектов, имеющих высочайшую удельную поверхность, начинают соприкасаться с последующим сближением в общую для всех частиц, упрочненную за счет армирования, битумно-полимерно-резиновую матрицу. При этом композиция становится более прочной, но в отличие от классического армирования сохраняет свою пластичность. За счет этого получаемое вяжущее становится более эластичным с повышенными когезионными и адгезионными показателями.

В заявляемой полимерно-битумной мастике, за счет модификации углеродными нанотрубками, содержание полимера в композиции снижается, с одновременным повышением температуры размягчения, растяжимости, эластичности и когезии. Так для получения теплостойкой мастики полимер вводится в среднем в количестве 5-12%, в соответствии с заявляемым техническим решением содержание полимера в композиции варьируется от 2,5 до 4%. При этом достижение высоких показателей качества мастики возможно при использовании как одностенных (ОУНТ), так и многостенных (МУНТ) углеродных трубок. Однако для достижения равнозначного эффекта содержание МУНТ в композиции должно быть увеличено. В соответствии с таблицей концентрация таких трубок должна в 2 раза превышать содержание ОУНТ при увеличении содержания полимера, чтобы достичь температуры хрупкости мастики -27°С и температуры размягчения 60-90°С. Наличие нанообъектов в составе мастик увеличивает адгезионные и когезионные характеристики композиционного материала.

Резиновая крошка, которая выполняет функцию наполнителя, повышает температуру размягчения системы. Введение резиновой крошки в состав мастики снижает расход дорогостоящих полимерных компонентов, позволяет удешевить модификацию вяжущего, тем самым приводит к значительной экономии. В процессе перемешивания резиновой крошки с битумным вяжущим, в присутствии наномодифицированного пластификатора, происходит частичный распад набухшей резиновой крошки с образованием вязкой пастообразной массы. В соответствии с требованиями к готовой продукции по теплостойкости содержание резиновой крошки может доходить до 5%. Дальнейшее увеличение содержания резиновой крошки создает трудности при приготовлении мастики, так как усложняется процесс ее перемешивания и получения однородной системы.

При последующем введении в эту систему минерального наполнителя центром структурирования становятся частички шунгита, содержащие в своем составе смесь разнообразных углеродных аллотропов, решетки которых соединены аморфным углеродом. Эти особенности строения позволяют при наполнении битумно-полимерно-резиновой композиции минеральным наполнителем сохранить высокую гибкость при отрицательных температурах, эластичность при 0°С, когезионную прочность, а также высокую адгезию к поверхности каменного материала. В качестве наполнителя для уменьшения содержания битума и регулирования показателей свойств мастики используется дисперсный шунгит. При наполнении системы минеральным наполнителем из шунгита варьировали его содержанием. Установлено, что наиболее предпочтительно использовать дисперсный шунгит в количестве 7%, при такой концентрации достигается наилучшая гибкость композиции, дальнейшее увеличение переводит смесь в очень вязкое состояние с приобретением хрупких свойств.

Заявляемые составы мастик имеют высокие адгезионные и когезионные показатели, повышенную гибкость, теплостойкость, эластичность, и растяжимость, в том числе при температуре 0°С, что видно из таблицы 2. А также приготовление при значительно невысоких температурах до 160°С, при которых не происходит интенсификации процессов старения, использование более высоких температур приготовления ведет к интенсификации процессов старения и деструкции полимера, что в совокупности приводит к ухудшению физико-механических и эксплуатационных показателей полимерно-битумных мастик.

В части способа приготовления полимерно-битумной мастики достижение заявляемых технических результатов осуществляется за счет введения дополнительной технологической операции - ультразвуковой диспергации ОУНТ (МУНТ) в пластификаторе в течение 7-15 мин. Ультразвуковая диспергация позволяет получить конечный продукт с наноармированной полимерной матрицей. Для осуществления этой технологической операции необходимо оснастить производство ультразвуковым диспергатором.

Похожие патенты RU2580130C2

название год авторы номер документа
Полимерно-битумное вяжущее и способ его приготовления 2020
  • Ядыкина Валентина Васильевна
  • Потапов Евгений Эдуардович
  • Траутваин Анна Ивановна
  • Выродова Кристина Сергеевна
  • Засорин Андрей Владимирович
  • Зубков Денис Геннадьевич
  • Алимпиев Сергей Вячеславович
RU2754709C2
ПОЛИМЕРНО-БИТУМНОЕ ВЯЖУЩЕЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Высоцкая Марина Алексеевна
  • Русина Светлана Юрьевна
  • Кузнецов Дмитрий Алексеевич
  • Ядыкина Валентина Васильевна
  • Спицына Наталья Германовна
  • Лобач Анатолий Степанович
RU2496812C1
БИТУМНО-РЕЗИНОВАЯ МАСТИКА 2010
  • Илиополов Сергей Константинович
  • Мардиросова Изабелла Вартановна
  • Леконцев Евгений Валерьевич
  • Горелов Станислав Викторович
  • Каклюгин Александр Викторович
  • Ивановская Ирина Викторовна
  • Черных Дмитрий Сергеевич
  • Балабанов Олег Анатольевич
RU2426754C1
БИТУМНО-ПОЛИМЕРНАЯ МАСТИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2004
  • Черняков А.В.
  • Богомолова О.В.
RU2258722C1
ПОЛИМЕРНО-БИТУМНАЯ МАСТИКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ 2007
  • Сохадзе Владимир Шалвович
RU2345107C1
БИТУМНАЯ КОМПОЗИЦИЯ 2004
  • Брехман Александр Иосифович
  • Андреев Евгений Иванович
  • Семенов Андрей Сергеевич
RU2267506C1
Резино-полимерно-битумное вяжущее и способ его получения 2020
  • Степанов Валерий Федорович
  • Дубина Сергей Иванович
  • Жуков Сергей Николаевич
  • Джафаров Руслан Мамедсалимович
  • Сорокин Алексей Васильевич
  • Лобачев Владимир Александрович
  • Никольский Вадим Геннадиевич
  • Дударева Татьяна Владимировна
  • Красоткина Ирина Александровна
  • Кудрявцев Вячеслав Анатольевич
  • Безштанько Людмила Викторовна
RU2752619C1
СПОСОБ ПОЛУЧЕНИЯ БИТУМНОГО ВЯЖУЩЕГО С УЛУЧШЕННЫМИ ВЯЗКОУПРУГИМИ И АДГЕЗИОННЫМИ ХАРАКТЕРИСТИКАМИ 2022
  • Ядыкова Анастасия Евгеньевна
  • Ильин Сергей Олегович
RU2785849C1
СОСТАВ И СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО БИТУМА ДЛЯ ДОРОЖНОГО СТРОИТЕЛЬСТВА 2022
  • Сорокин Игорь Владимирович
  • Поляков Алексей Николаевич
  • Грачев Владимир Иванович
  • Семенов Илья Вячеславович
RU2798340C1
Полимерно-битумная композиция и способ ее получения 2020
  • Фролов Виктор Андреевич
  • Беляев Павел Серафимович
  • Макеев Павел Владимирович
  • Беляев Вадим Павлович
  • Шашков Иван Владимирович
RU2748078C1

Реферат патента 2016 года БИТУМНО-ПОЛИМЕРНАЯ МАСТИКА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Изобретение относится к области производства битумно-полимерных строительных и гидроизоляционных материалов, используемых для гидроизоляционной защиты бетонных, кирпичных, надземных и подземных сооружений, а также может использоваться в гражданском, аэродромном и дорожном строительстве для заливки швов и трещин, дорожных покрытий и конструкций. Мастика включает дорожный битум, дивинилстирольный термоэластопласт, пластификатор - индустриальное масло, резиновую крошку, в качестве минерального наполнителя - дисперсный шунгит и наномодификатор, в качестве которого использовали одностенные или многостенные углеродные нанотрубки, при следующем соотношении компонентов, мас.%: наномодификатор - 1·10-3-6·10-3, индустриальное масло - 2-9,4, термоэластопласт - 2,5-3,5, резиновая крошка - 3-5, наполнитель - 7, битум - остальное. Способ приготовления мастики включает нагрев битума до 160°С, введение в него при постоянном перемешивании полимера и резиновой крошки до полного растворения полимера, последующее смешение с минеральным наполнителем до однородного состояния мастики. Дополнительно во время нагрева битума модифицируют пластификатор, путем введения в него наномодификатора и ультразвукового диспергирования полученного раствора, после чего наномодифицированный пластификатор вводят в разогретый битум совместно с полимером и резиновой крошкой. Результатом является повышение теплостойкости композиции, растяжимости и ее эластичности. 2 н.п. ф-лы, 2 табл.

Формула изобретения RU 2 580 130 C2

1. Битумно-полимерная мастика, включающая дорожный битум, полимер, пластификатор, мелкодисперсную резиновую крошку и минеральный наполнитель, отличающаяся тем, что качестве полимера содержит дивинилстирольный термоэластопласт, в качестве пластификатора - индустриальное масло, в качестве минерального наполнителя - дисперсный шунгит, дополнительно содержит наномодификатор, в качестве которого использовали одностенные или многостенные углеродные нанотрубки, при следующем соотношении компонентов, мас.%:
наномодификатор 1·10-3-6·10-3 индустриальное масло 2-9,4 дивинилстирольный термоэластопласт 2,5-3,5 резиновая крошка 3-5 минеральный наполнитель шунгит 7 битум остальное.

2. Способ приготовления битумно-полимерной мастики по п.1, включающий нагрев битума до 160°С, введение в него при постоянном перемешивании полимера и резиновой крошки до полного растворения полимера, последующее смешение с минеральным наполнителем до однородного состояния мастики, отличающийся тем, что дополнительно во время нагрева битума модифицируют пластификатор путем введения в него наномодификатора и ультразвукового диспергирования полученного раствора, после чего наномодифицированный пластификатор вводят в разогретый битум совместно с полимером и резиновой крошкой.

Документы, цитированные в отчете о поиске Патент 2016 года RU2580130C2

ПОЛИМЕРНО-БИТУМНОЕ ВЯЖУЩЕЕ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Высоцкая Марина Алексеевна
  • Русина Светлана Юрьевна
  • Кузнецов Дмитрий Алексеевич
  • Ядыкина Валентина Васильевна
  • Спицына Наталья Германовна
  • Лобач Анатолий Степанович
RU2496812C1
Способ соединения фанеры с минеральными массами 1929
  • Беликов Н.Ф.
SU18915A1
Г.А.БОНЧЕНКО, "Асфальтобетон
Сдвигоустойчивость и технология модифицирования полимером", "Машиностроение", М., 1994, стр
Транспортер для перевозки товарных вагонов по трамвайным путям 1919
  • Калашников Н.А.
SU102A1
СПОСОБ ПОЛУЧЕНИЯ БИТУМНО-ПОЛИМЕРНОЙ КОМПОЗИЦИИ ДЛЯ ПРОИЗВОДСТВА ГИДРОИЗОЛЯЦИОННОГО И КРОВЕЛЬНОГО МАТЕРИАЛА "ФИЛИЗОЛ" 1996
  • Краснов Л.С.
  • Малевинский А.К.
  • Коташевский В.А.
  • Гаврилушкина Ф.С.
RU2115681C1
Машина для механизированной установки штанговой крепи 1959
  • Копыловский С.А.
  • Маркер М.Н.
  • Панчешников И.Е.
  • Семушин М.М.
SU125532A1
СПОСОБ УПРОЧНЕНИЯ АСФАЛЬТОВОГО ДОРОЖНОГО ПОКРЫТИЯ УГЛЕРОДНЫМ НАНОМАТЕРИАЛОМ 2013
  • Запороцкова Ирина Владимировна
  • Сипливый Борис Николаевич
RU2515007C1

RU 2 580 130 C2

Авторы

Высоцкая Марина Алексеевна

Шеховцова Светлана Юрьевна

Беляев Дмитрий Валерьевич

Даты

2016-04-10Публикация

2014-08-19Подача